Ardupilot2/libraries/AP_OpticalFlow/AP_OpticalFlow.cpp
2024-06-04 09:20:21 +10:00

324 lines
10 KiB
C++

#include <AP_BoardConfig/AP_BoardConfig.h>
#include "AP_OpticalFlow.h"
#if AP_OPTICALFLOW_ENABLED
#include "AP_OpticalFlow_Onboard.h"
#include "AP_OpticalFlow_SITL.h"
#include "AP_OpticalFlow_Pixart.h"
#include "AP_OpticalFlow_PX4Flow.h"
#include "AP_OpticalFlow_CXOF.h"
#include "AP_OpticalFlow_MAV.h"
#include "AP_OpticalFlow_HereFlow.h"
#include "AP_OpticalFlow_MSP.h"
#include "AP_OpticalFlow_UPFLOW.h"
#include <AP_Logger/AP_Logger.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_AHRS/AP_AHRS.h>
extern const AP_HAL::HAL& hal;
#ifndef OPTICAL_FLOW_TYPE_DEFAULT
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_CHIBIOS_SKYVIPER_F412 || defined(HAL_HAVE_PIXARTFLOW_SPI)
#define OPTICAL_FLOW_TYPE_DEFAULT Type::PIXART
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP
#define OPTICAL_FLOW_TYPE_DEFAULT Type::BEBOP
#else
#define OPTICAL_FLOW_TYPE_DEFAULT Type::NONE
#endif
#endif
const AP_Param::GroupInfo AP_OpticalFlow::var_info[] = {
// @Param: _TYPE
// @DisplayName: Optical flow sensor type
// @Description: Optical flow sensor type
// @Values: 0:None, 1:PX4Flow, 2:Pixart, 3:Bebop, 4:CXOF, 5:MAVLink, 6:DroneCAN, 7:MSP, 8:UPFLOW
// @User: Standard
// @RebootRequired: True
AP_GROUPINFO_FLAGS("_TYPE", 0, AP_OpticalFlow, _type, (float)OPTICAL_FLOW_TYPE_DEFAULT, AP_PARAM_FLAG_ENABLE),
// @Param: _FXSCALER
// @DisplayName: X axis optical flow scale factor correction
// @Description: This sets the parts per thousand scale factor correction applied to the flow sensor X axis optical rate. It can be used to correct for variations in effective focal length. Each positive increment of 1 increases the scale factor applied to the X axis optical flow reading by 0.1%. Negative values reduce the scale factor.
// @Range: -800 +800
// @Increment: 1
// @User: Standard
AP_GROUPINFO("_FXSCALER", 1, AP_OpticalFlow, _flowScalerX, 0),
// @Param: _FYSCALER
// @DisplayName: Y axis optical flow scale factor correction
// @Description: This sets the parts per thousand scale factor correction applied to the flow sensor Y axis optical rate. It can be used to correct for variations in effective focal length. Each positive increment of 1 increases the scale factor applied to the Y axis optical flow reading by 0.1%. Negative values reduce the scale factor.
// @Range: -800 +800
// @Increment: 1
// @User: Standard
AP_GROUPINFO("_FYSCALER", 2, AP_OpticalFlow, _flowScalerY, 0),
// @Param: _ORIENT_YAW
// @DisplayName: Flow sensor yaw alignment
// @Description: Specifies the number of centi-degrees that the flow sensor is yawed relative to the vehicle. A sensor with its X-axis pointing to the right of the vehicle X axis has a positive yaw angle.
// @Units: cdeg
// @Range: -17999 +18000
// @Increment: 10
// @User: Standard
AP_GROUPINFO("_ORIENT_YAW", 3, AP_OpticalFlow, _yawAngle_cd, 0),
// @Param: _POS_X
// @DisplayName: X position offset
// @Description: X position of the optical flow sensor focal point in body frame. Positive X is forward of the origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Advanced
// @Param: _POS_Y
// @DisplayName: Y position offset
// @Description: Y position of the optical flow sensor focal point in body frame. Positive Y is to the right of the origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Advanced
// @Param: _POS_Z
// @DisplayName: Z position offset
// @Description: Z position of the optical flow sensor focal point in body frame. Positive Z is down from the origin.
// @Units: m
// @Range: -5 5
// @Increment: 0.01
// @User: Advanced
AP_GROUPINFO("_POS", 4, AP_OpticalFlow, _pos_offset, 0.0f),
// @Param: _ADDR
// @DisplayName: Address on the bus
// @Description: This is used to select between multiple possible I2C addresses for some sensor types. For PX4Flow you can choose 0 to 7 for the 8 possible addresses on the I2C bus.
// @Range: 0 127
// @User: Advanced
AP_GROUPINFO("_ADDR", 5, AP_OpticalFlow, _address, 0),
// @Param: _HGT_OVR
// @DisplayName: Height override of sensor above ground
// @Description: This is used in rover vehicles, where the sensor is a fixed height above the ground
// @Units: m
// @Range: 0 2
// @Increment: 0.01
// @User: Advanced
AP_GROUPINFO_FRAME("_HGT_OVR", 6, AP_OpticalFlow, _height_override, 0.0f, AP_PARAM_FRAME_ROVER),
AP_GROUPEND
};
// default constructor
AP_OpticalFlow::AP_OpticalFlow()
{
_singleton = this;
AP_Param::setup_object_defaults(this, var_info);
}
void AP_OpticalFlow::init(uint32_t log_bit)
{
_log_bit = log_bit;
// return immediately if not enabled or backend already created
if ((_type == Type::NONE) || (backend != nullptr)) {
return;
}
switch ((Type)_type) {
case Type::NONE:
break;
case Type::PX4FLOW:
#if AP_OPTICALFLOW_PX4FLOW_ENABLED
backend = AP_OpticalFlow_PX4Flow::detect(*this);
#endif
break;
case Type::PIXART:
#if AP_OPTICALFLOW_PIXART_ENABLED
backend = AP_OpticalFlow_Pixart::detect("pixartflow", *this);
if (backend == nullptr) {
backend = AP_OpticalFlow_Pixart::detect("pixartPC15", *this);
}
#endif
break;
case Type::BEBOP:
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP
backend = NEW_NOTHROW AP_OpticalFlow_Onboard(*this);
#endif
break;
case Type::CXOF:
#if AP_OPTICALFLOW_CXOF_ENABLED
backend = AP_OpticalFlow_CXOF::detect(*this);
#endif
break;
case Type::MAVLINK:
#if AP_OPTICALFLOW_MAV_ENABLED
backend = AP_OpticalFlow_MAV::detect(*this);
#endif
break;
case Type::UAVCAN:
#if AP_OPTICALFLOW_HEREFLOW_ENABLED
backend = NEW_NOTHROW AP_OpticalFlow_HereFlow(*this);
#endif
break;
case Type::MSP:
#if HAL_MSP_OPTICALFLOW_ENABLED
backend = AP_OpticalFlow_MSP::detect(*this);
#endif
break;
case Type::UPFLOW:
#if AP_OPTICALFLOW_UPFLOW_ENABLED
backend = AP_OpticalFlow_UPFLOW::detect(*this);
#endif
break;
case Type::SITL:
#if AP_OPTICALFLOW_SITL_ENABLED
backend = NEW_NOTHROW AP_OpticalFlow_SITL(*this);
#endif
break;
}
if (backend != nullptr) {
backend->init();
}
}
void AP_OpticalFlow::update(void)
{
// exit immediately if not enabled
if (!enabled()) {
return;
}
if (backend != nullptr) {
backend->update();
}
// only healthy if the data is less than 0.5s old
_flags.healthy = (AP_HAL::millis() - _last_update_ms < 500);
#if AP_OPTICALFLOW_CALIBRATOR_ENABLED
// update calibrator and save resulting scaling
if (_calibrator != nullptr) {
if (_calibrator->update()) {
// apply new calibration values
const Vector2f new_scaling = _calibrator->get_scalars();
const float flow_scalerx_as_multiplier = (1.0 + (_flowScalerX * 0.001)) * new_scaling.x;
const float flow_scalery_as_multiplier = (1.0 + (_flowScalerY * 0.001)) * new_scaling.y;
_flowScalerX.set_and_save_ifchanged((flow_scalerx_as_multiplier - 1.0) * 1000.0);
_flowScalerY.set_and_save_ifchanged((flow_scalery_as_multiplier - 1.0) * 1000.0);
_flowScalerX.notify();
_flowScalerY.notify();
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "FlowCal: FLOW_FXSCALER=%d, FLOW_FYSCALER=%d", (int)_flowScalerX, (int)_flowScalerY);
}
}
#endif
}
void AP_OpticalFlow::handle_msg(const mavlink_message_t &msg)
{
// exit immediately if not enabled
if (!enabled()) {
return;
}
if (backend != nullptr) {
backend->handle_msg(msg);
}
}
#if HAL_MSP_OPTICALFLOW_ENABLED
void AP_OpticalFlow::handle_msp(const MSP::msp_opflow_data_message_t &pkt)
{
// exit immediately if not enabled
if (!enabled()) {
return;
}
if (backend != nullptr) {
backend->handle_msp(pkt);
}
}
#endif //HAL_MSP_OPTICALFLOW_ENABLED
#if AP_OPTICALFLOW_CALIBRATOR_ENABLED
// start calibration
void AP_OpticalFlow::start_calibration()
{
if (_calibrator == nullptr) {
_calibrator = NEW_NOTHROW AP_OpticalFlow_Calibrator();
if (_calibrator == nullptr) {
GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "FlowCal: failed to start");
return;
}
}
if (_calibrator != nullptr) {
_calibrator->start();
}
}
// stop calibration
void AP_OpticalFlow::stop_calibration()
{
if (_calibrator != nullptr) {
_calibrator->stop();
}
}
#endif
void AP_OpticalFlow::update_state(const OpticalFlow_state &state)
{
_state = state;
_last_update_ms = AP_HAL::millis();
#if AP_AHRS_ENABLED
// write to log and send to EKF if new data has arrived
AP::ahrs().writeOptFlowMeas(quality(),
_state.flowRate,
_state.bodyRate,
_last_update_ms,
get_pos_offset(),
get_height_override());
#endif
#if HAL_LOGGING_ENABLED
Log_Write_Optflow();
#endif
}
#if HAL_LOGGING_ENABLED
void AP_OpticalFlow::Log_Write_Optflow()
{
AP_Logger *logger = AP_Logger::get_singleton();
if (logger == nullptr) {
return;
}
if (_log_bit != (uint32_t)-1 &&
!logger->should_log(_log_bit)) {
return;
}
struct log_Optflow pkt = {
LOG_PACKET_HEADER_INIT(LOG_OPTFLOW_MSG),
time_us : AP_HAL::micros64(),
surface_quality : _state.surface_quality,
flow_x : _state.flowRate.x,
flow_y : _state.flowRate.y,
body_x : _state.bodyRate.x,
body_y : _state.bodyRate.y
};
logger->WriteBlock(&pkt, sizeof(pkt));
}
#endif // HAL_LOGGING_ENABLED
// singleton instance
AP_OpticalFlow *AP_OpticalFlow::_singleton;
namespace AP {
AP_OpticalFlow *opticalflow()
{
return AP_OpticalFlow::get_singleton();
}
}
#endif // AP_OPTICALFLOW_ENABLED