057822b51c
We should return the number of bytes written/read, not 0 on success. This number may be useful in some cases so return it. While at it fix a simple wrong space in the header.
851 lines
31 KiB
C++
851 lines
31 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <assert.h>
|
|
#include <utility>
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#include "AP_InertialSensor_MPU6000.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// MPU6000 accelerometer scaling
|
|
#define MPU6000_ACCEL_SCALE_1G (GRAVITY_MSS / 4096.0f)
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
|
|
#include <AP_HAL_Linux/GPIO.h>
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBOARD || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF
|
|
#define MPU6000_DRDY_PIN BBB_P8_14
|
|
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT
|
|
#define MPU6000_DRDY_PIN RPI_GPIO_24
|
|
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_MINLURE
|
|
#define MPU6000_DRDY_PIN MINNOW_GPIO_I2S_CLK
|
|
#endif
|
|
#endif
|
|
|
|
// MPU 6000 registers
|
|
#define MPUREG_XG_OFFS_TC 0x00
|
|
#define MPUREG_YG_OFFS_TC 0x01
|
|
#define MPUREG_ZG_OFFS_TC 0x02
|
|
#define MPUREG_X_FINE_GAIN 0x03
|
|
#define MPUREG_Y_FINE_GAIN 0x04
|
|
#define MPUREG_Z_FINE_GAIN 0x05
|
|
#define MPUREG_XA_OFFS_H 0x06 // X axis accelerometer offset (high byte)
|
|
#define MPUREG_XA_OFFS_L 0x07 // X axis accelerometer offset (low byte)
|
|
#define MPUREG_YA_OFFS_H 0x08 // Y axis accelerometer offset (high byte)
|
|
#define MPUREG_YA_OFFS_L 0x09 // Y axis accelerometer offset (low byte)
|
|
#define MPUREG_ZA_OFFS_H 0x0A // Z axis accelerometer offset (high byte)
|
|
#define MPUREG_ZA_OFFS_L 0x0B // Z axis accelerometer offset (low byte)
|
|
#define MPUREG_PRODUCT_ID 0x0C // Product ID Register
|
|
#define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte)
|
|
#define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte)
|
|
#define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte)
|
|
#define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte)
|
|
#define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte)
|
|
#define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte)
|
|
#define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(<this value>+1) = 200Hz
|
|
# define MPUREG_SMPLRT_1000HZ 0x00
|
|
# define MPUREG_SMPLRT_500HZ 0x01
|
|
# define MPUREG_SMPLRT_250HZ 0x03
|
|
# define MPUREG_SMPLRT_200HZ 0x04
|
|
# define MPUREG_SMPLRT_100HZ 0x09
|
|
# define MPUREG_SMPLRT_50HZ 0x13
|
|
#define MPUREG_CONFIG 0x1A
|
|
#define MPUREG_GYRO_CONFIG 0x1B
|
|
// bit definitions for MPUREG_GYRO_CONFIG
|
|
# define BITS_GYRO_FS_250DPS 0x00
|
|
# define BITS_GYRO_FS_500DPS 0x08
|
|
# define BITS_GYRO_FS_1000DPS 0x10
|
|
# define BITS_GYRO_FS_2000DPS 0x18
|
|
# define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits
|
|
# define BITS_GYRO_ZGYRO_SELFTEST 0x20
|
|
# define BITS_GYRO_YGYRO_SELFTEST 0x40
|
|
# define BITS_GYRO_XGYRO_SELFTEST 0x80
|
|
#define MPUREG_ACCEL_CONFIG 0x1C
|
|
#define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this
|
|
#define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms
|
|
#define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation.
|
|
#define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms.
|
|
#define MPUREG_FIFO_EN 0x23
|
|
# define BIT_TEMP_FIFO_EN 0x80
|
|
# define BIT_XG_FIFO_EN 0x40
|
|
# define BIT_YG_FIFO_EN 0x20
|
|
# define BIT_ZG_FIFO_EN 0x10
|
|
# define BIT_ACCEL_FIFO_EN 0x08
|
|
# define BIT_SLV2_FIFO_EN 0x04
|
|
# define BIT_SLV1_FIFO_EN 0x02
|
|
# define BIT_SLV0_FIFI_EN0 0x01
|
|
#define MPUREG_I2C_MST_CTRL 0x24
|
|
# define BIT_I2C_MST_P_NSR 0x10
|
|
# define BIT_I2C_MST_CLK_400KHZ 0x0D
|
|
#define MPUREG_I2C_SLV0_ADDR 0x25
|
|
#define MPUREG_I2C_SLV1_ADDR 0x28
|
|
#define MPUREG_I2C_SLV2_ADDR 0x2B
|
|
#define MPUREG_I2C_SLV3_ADDR 0x2E
|
|
#define MPUREG_INT_PIN_CFG 0x37
|
|
# define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs
|
|
# define BIT_LATCH_INT_EN 0x20 // latch data ready pin
|
|
#define MPUREG_I2C_SLV4_CTRL 0x34
|
|
#define MPUREG_INT_ENABLE 0x38
|
|
// bit definitions for MPUREG_INT_ENABLE
|
|
# define BIT_RAW_RDY_EN 0x01
|
|
# define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems
|
|
# define BIT_UNKNOWN_INT_EN 0x04
|
|
# define BIT_I2C_MST_INT_EN 0x08
|
|
# define BIT_FIFO_OFLOW_EN 0x10
|
|
# define BIT_ZMOT_EN 0x20
|
|
# define BIT_MOT_EN 0x40
|
|
# define BIT_FF_EN 0x80
|
|
#define MPUREG_INT_STATUS 0x3A
|
|
// bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired)
|
|
# define BIT_RAW_RDY_INT 0x01
|
|
# define BIT_DMP_INT 0x02
|
|
# define BIT_UNKNOWN_INT 0x04
|
|
# define BIT_I2C_MST_INT 0x08
|
|
# define BIT_FIFO_OFLOW_INT 0x10
|
|
# define BIT_ZMOT_INT 0x20
|
|
# define BIT_MOT_INT 0x40
|
|
# define BIT_FF_INT 0x80
|
|
#define MPUREG_ACCEL_XOUT_H 0x3B
|
|
#define MPUREG_ACCEL_XOUT_L 0x3C
|
|
#define MPUREG_ACCEL_YOUT_H 0x3D
|
|
#define MPUREG_ACCEL_YOUT_L 0x3E
|
|
#define MPUREG_ACCEL_ZOUT_H 0x3F
|
|
#define MPUREG_ACCEL_ZOUT_L 0x40
|
|
#define MPUREG_TEMP_OUT_H 0x41
|
|
#define MPUREG_TEMP_OUT_L 0x42
|
|
#define MPUREG_GYRO_XOUT_H 0x43
|
|
#define MPUREG_GYRO_XOUT_L 0x44
|
|
#define MPUREG_GYRO_YOUT_H 0x45
|
|
#define MPUREG_GYRO_YOUT_L 0x46
|
|
#define MPUREG_GYRO_ZOUT_H 0x47
|
|
#define MPUREG_GYRO_ZOUT_L 0x48
|
|
#define MPUREG_EXT_SENS_DATA_00 0x49
|
|
#define MPUREG_I2C_SLV0_DO 0x63
|
|
#define MPUREG_I2C_MST_DELAY_CTRL 0x67
|
|
# define BIT_I2C_SLV0_DLY_EN 0x01
|
|
# define BIT_I2C_SLV1_DLY_EN 0x02
|
|
# define BIT_I2C_SLV2_DLY_EN 0x04
|
|
# define BIT_I2C_SLV3_DLY_EN 0x08
|
|
#define MPUREG_USER_CTRL 0x6A
|
|
// bit definitions for MPUREG_USER_CTRL
|
|
# define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp)
|
|
# define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set)
|
|
# define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer
|
|
# define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP
|
|
# define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface
|
|
# define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors
|
|
# define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations
|
|
# define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations
|
|
#define MPUREG_PWR_MGMT_1 0x6B
|
|
# define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator
|
|
# define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference
|
|
# define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference
|
|
# define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference
|
|
# define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference
|
|
# define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference
|
|
# define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset
|
|
# define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor
|
|
# define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL
|
|
# define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode
|
|
# define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device
|
|
#define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode
|
|
#define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers)
|
|
#define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory)
|
|
#define MPUREG_MEM_R_W 0x6F // DMP related register
|
|
#define MPUREG_DMP_CFG_1 0x70 // DMP related register
|
|
#define MPUREG_DMP_CFG_2 0x71 // DMP related register
|
|
#define MPUREG_FIFO_COUNTH 0x72
|
|
#define MPUREG_FIFO_COUNTL 0x73
|
|
#define MPUREG_FIFO_R_W 0x74
|
|
#define MPUREG_WHOAMI 0x75
|
|
|
|
#define BIT_READ_FLAG 0x80
|
|
#define BIT_I2C_SLVX_EN 0x80
|
|
|
|
// Configuration bits MPU 3000 and MPU 6000 (not revised)?
|
|
#define BITS_DLPF_CFG_256HZ_NOLPF2 0x00
|
|
#define BITS_DLPF_CFG_188HZ 0x01
|
|
#define BITS_DLPF_CFG_98HZ 0x02
|
|
#define BITS_DLPF_CFG_42HZ 0x03
|
|
#define BITS_DLPF_CFG_20HZ 0x04
|
|
#define BITS_DLPF_CFG_10HZ 0x05
|
|
#define BITS_DLPF_CFG_5HZ 0x06
|
|
#define BITS_DLPF_CFG_2100HZ_NOLPF 0x07
|
|
#define BITS_DLPF_CFG_MASK 0x07
|
|
|
|
// Product ID Description for MPU6000
|
|
// high 4 bits low 4 bits
|
|
// Product Name Product Revision
|
|
#define MPU6000ES_REV_C4 0x14 // 0001 0100
|
|
#define MPU6000ES_REV_C5 0x15 // 0001 0101
|
|
#define MPU6000ES_REV_D6 0x16 // 0001 0110
|
|
#define MPU6000ES_REV_D7 0x17 // 0001 0111
|
|
#define MPU6000ES_REV_D8 0x18 // 0001 1000
|
|
#define MPU6000_REV_C4 0x54 // 0101 0100
|
|
#define MPU6000_REV_C5 0x55 // 0101 0101
|
|
#define MPU6000_REV_D6 0x56 // 0101 0110
|
|
#define MPU6000_REV_D7 0x57 // 0101 0111
|
|
#define MPU6000_REV_D8 0x58 // 0101 1000
|
|
#define MPU6000_REV_D9 0x59 // 0101 1001
|
|
|
|
#define MPU6000_SAMPLE_SIZE 14
|
|
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH
|
|
#define MPU6000_MAX_FIFO_SAMPLES 6
|
|
#else
|
|
#define MPU6000_MAX_FIFO_SAMPLES 3
|
|
#endif
|
|
#define MAX_DATA_READ (MPU6000_MAX_FIFO_SAMPLES * MPU6000_SAMPLE_SIZE)
|
|
|
|
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
|
|
#define uint16_val(v, idx)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])
|
|
|
|
/*
|
|
* RM-MPU-6000A-00.pdf, page 33, section 4.25 lists LSB sensitivity of
|
|
* gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3)
|
|
*/
|
|
static const float GYRO_SCALE = (0.0174532f / 16.4f);
|
|
|
|
/*
|
|
* RM-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of
|
|
* accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2)
|
|
*
|
|
* See note below about accel scaling of engineering sample MPU6k
|
|
* variants however
|
|
*/
|
|
|
|
AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu,
|
|
AP_HAL::OwnPtr<AP_HAL::Device> dev,
|
|
enum bus_type type,
|
|
bool use_fifo,
|
|
uint8_t read_flag)
|
|
: AP_InertialSensor_Backend(imu)
|
|
, _read_flag(read_flag)
|
|
, _use_fifo(use_fifo)
|
|
, _bus_type(type)
|
|
, _temp_filter(1000, 1)
|
|
, _dev(std::move(dev))
|
|
{
|
|
}
|
|
|
|
AP_InertialSensor_MPU6000::~AP_InertialSensor_MPU6000()
|
|
{
|
|
delete _auxiliary_bus;
|
|
}
|
|
|
|
AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::probe(AP_InertialSensor &imu,
|
|
AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev)
|
|
{
|
|
AP_InertialSensor_MPU6000 *sensor =
|
|
new AP_InertialSensor_MPU6000(imu, std::move(dev), BUS_TYPE_I2C, true, 0);
|
|
if (!sensor || !sensor->_init()) {
|
|
delete sensor;
|
|
return nullptr;
|
|
}
|
|
sensor->_id = HAL_INS_MPU60XX_I2C;
|
|
|
|
return sensor;
|
|
}
|
|
|
|
|
|
AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::probe(AP_InertialSensor &imu,
|
|
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev)
|
|
{
|
|
AP_InertialSensor_MPU6000 *sensor =
|
|
new AP_InertialSensor_MPU6000(imu, std::move(dev), BUS_TYPE_SPI, false, 0x80);
|
|
if (!sensor || !sensor->_init()) {
|
|
delete sensor;
|
|
return nullptr;
|
|
}
|
|
sensor->_id = HAL_INS_MPU60XX_SPI;
|
|
|
|
return sensor;
|
|
}
|
|
|
|
bool AP_InertialSensor_MPU6000::_init()
|
|
{
|
|
#ifdef MPU6000_DRDY_PIN
|
|
_drdy_pin = hal.gpio->channel(MPU6000_DRDY_PIN);
|
|
_drdy_pin->mode(HAL_GPIO_INPUT);
|
|
#endif
|
|
|
|
hal.scheduler->suspend_timer_procs();
|
|
bool success = _hardware_init();
|
|
hal.scheduler->resume_timer_procs();
|
|
|
|
#if MPU6000_DEBUG
|
|
_dump_registers();
|
|
#endif
|
|
|
|
return success;
|
|
}
|
|
|
|
void AP_InertialSensor_MPU6000::_fifo_reset()
|
|
{
|
|
_register_write(MPUREG_USER_CTRL, 0);
|
|
_register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_RESET);
|
|
_register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_EN);
|
|
}
|
|
|
|
void AP_InertialSensor_MPU6000::_fifo_enable()
|
|
{
|
|
_register_write(MPUREG_FIFO_EN, BIT_XG_FIFO_EN | BIT_YG_FIFO_EN |
|
|
BIT_ZG_FIFO_EN | BIT_ACCEL_FIFO_EN | BIT_TEMP_FIFO_EN);
|
|
_fifo_reset();
|
|
hal.scheduler->delay(1);
|
|
}
|
|
|
|
bool AP_InertialSensor_MPU6000::_has_auxiliary_bus()
|
|
{
|
|
return _bus_type != BUS_TYPE_I2C;
|
|
}
|
|
|
|
void AP_InertialSensor_MPU6000::start()
|
|
{
|
|
hal.scheduler->suspend_timer_procs();
|
|
|
|
if (!_dev->get_semaphore()->take(100)) {
|
|
AP_HAL::panic("MPU6000: Unable to get semaphore");
|
|
}
|
|
|
|
// initially run the bus at low speed
|
|
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
|
|
|
|
// only used for wake-up in accelerometer only low power mode
|
|
_register_write(MPUREG_PWR_MGMT_2, 0x00);
|
|
hal.scheduler->delay(1);
|
|
|
|
if (_use_fifo) {
|
|
_fifo_enable();
|
|
}
|
|
|
|
// disable sensor filtering
|
|
_set_filter_register(256);
|
|
|
|
// set sample rate to 1000Hz and apply a software filter
|
|
// In this configuration, the gyro sample rate is 8kHz
|
|
// Therefore the sample rate value is 8kHz/(SMPLRT_DIV + 1)
|
|
// So we have to set it to 7 to have a 1kHz sampling
|
|
// rate on the gyro
|
|
_register_write(MPUREG_SMPLRT_DIV, 7);
|
|
hal.scheduler->delay(1);
|
|
|
|
// Gyro scale 2000º/s
|
|
_register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS);
|
|
hal.scheduler->delay(1);
|
|
|
|
// read the product ID rev c has 1/2 the sensitivity of rev d
|
|
_product_id = _register_read(MPUREG_PRODUCT_ID);
|
|
//Serial.printf("Product_ID= 0x%x\n", (unsigned) _mpu6000_product_id);
|
|
|
|
// TODO: should be changed to 16G once we have a way to override the
|
|
// previous offsets
|
|
if ((_product_id == MPU6000ES_REV_C4) ||
|
|
(_product_id == MPU6000ES_REV_C5) ||
|
|
(_product_id == MPU6000_REV_C4) ||
|
|
(_product_id == MPU6000_REV_C5)) {
|
|
// Accel scale 8g (4096 LSB/g)
|
|
// Rev C has different scaling than rev D
|
|
_register_write(MPUREG_ACCEL_CONFIG,1<<3);
|
|
} else {
|
|
// Accel scale 8g (4096 LSB/g)
|
|
_register_write(MPUREG_ACCEL_CONFIG,2<<3);
|
|
}
|
|
hal.scheduler->delay(1);
|
|
|
|
// configure interrupt to fire when new data arrives
|
|
_register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN);
|
|
hal.scheduler->delay(1);
|
|
|
|
// clear interrupt on any read, and hold the data ready pin high
|
|
// until we clear the interrupt
|
|
_register_write(MPUREG_INT_PIN_CFG, BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN);
|
|
|
|
// now that we have initialised, we set the bus speed to high
|
|
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
|
|
|
|
_dev->get_semaphore()->give();
|
|
|
|
// grab the used instances
|
|
_gyro_instance = _imu.register_gyro(1000);
|
|
_accel_instance = _imu.register_accel(1000);
|
|
|
|
hal.scheduler->resume_timer_procs();
|
|
|
|
// start the timer process to read samples
|
|
hal.scheduler->register_timer_process(
|
|
FUNCTOR_BIND_MEMBER(&AP_InertialSensor_MPU6000::_poll_data, void));
|
|
}
|
|
|
|
/*
|
|
process any
|
|
*/
|
|
bool AP_InertialSensor_MPU6000::update()
|
|
{
|
|
update_accel(_accel_instance);
|
|
update_gyro(_gyro_instance);
|
|
|
|
_publish_temperature(_accel_instance, _temp_filtered);
|
|
|
|
/* give the temperature to the control loop in order to keep it constant*/
|
|
hal.util->set_imu_temp(_temp_filtered);
|
|
|
|
return true;
|
|
}
|
|
|
|
AuxiliaryBus *AP_InertialSensor_MPU6000::get_auxiliary_bus()
|
|
{
|
|
if (_auxiliary_bus) {
|
|
return _auxiliary_bus;
|
|
}
|
|
|
|
if (_has_auxiliary_bus()) {
|
|
_auxiliary_bus = new AP_MPU6000_AuxiliaryBus(*this);
|
|
}
|
|
|
|
return _auxiliary_bus;
|
|
}
|
|
|
|
/*
|
|
* Return true if the MPU6000 has new data available for reading.
|
|
*
|
|
* We use the data ready pin if it is available. Otherwise, read the
|
|
* status register.
|
|
*/
|
|
bool AP_InertialSensor_MPU6000::_data_ready()
|
|
{
|
|
if (_drdy_pin) {
|
|
return _drdy_pin->read() != 0;
|
|
}
|
|
uint8_t status = _register_read(MPUREG_INT_STATUS);
|
|
return (status & BIT_RAW_RDY_INT) != 0;
|
|
}
|
|
|
|
/*
|
|
* Timer process to poll for new data from the MPU6000.
|
|
*/
|
|
void AP_InertialSensor_MPU6000::_poll_data()
|
|
{
|
|
if (!_dev->get_semaphore()->take_nonblocking()) {
|
|
return;
|
|
}
|
|
|
|
if (_use_fifo) {
|
|
_read_fifo();
|
|
} else if (_data_ready()) {
|
|
_read_sample();
|
|
}
|
|
|
|
_dev->get_semaphore()->give();
|
|
}
|
|
|
|
void AP_InertialSensor_MPU6000::_accumulate(uint8_t *samples, uint8_t n_samples)
|
|
{
|
|
for (uint8_t i = 0; i < n_samples; i++) {
|
|
uint8_t *data = samples + MPU6000_SAMPLE_SIZE * i;
|
|
Vector3f accel, gyro;
|
|
float temp;
|
|
|
|
accel = Vector3f(int16_val(data, 1),
|
|
int16_val(data, 0),
|
|
-int16_val(data, 2));
|
|
accel *= MPU6000_ACCEL_SCALE_1G;
|
|
|
|
gyro = Vector3f(int16_val(data, 5),
|
|
int16_val(data, 4),
|
|
-int16_val(data, 6));
|
|
gyro *= GYRO_SCALE;
|
|
|
|
temp = int16_val(data, 3);
|
|
/* scaling/offset values from the datasheet */
|
|
temp = temp/340 + 36.53;
|
|
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF
|
|
accel.rotate(ROTATION_PITCH_180_YAW_90);
|
|
gyro.rotate(ROTATION_PITCH_180_YAW_90);
|
|
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP
|
|
accel.rotate(ROTATION_YAW_270);
|
|
gyro.rotate(ROTATION_YAW_270);
|
|
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_MINLURE
|
|
accel.rotate(ROTATION_YAW_90);
|
|
gyro.rotate(ROTATION_YAW_90);
|
|
#endif
|
|
|
|
_rotate_and_correct_accel(_accel_instance, accel);
|
|
_rotate_and_correct_gyro(_gyro_instance, gyro);
|
|
|
|
_notify_new_accel_raw_sample(_accel_instance, accel);
|
|
_notify_new_gyro_raw_sample(_gyro_instance, gyro);
|
|
|
|
_temp_filtered = _temp_filter.apply(temp);
|
|
}
|
|
}
|
|
|
|
void AP_InertialSensor_MPU6000::_read_fifo()
|
|
{
|
|
uint8_t n_samples;
|
|
uint16_t bytes_read;
|
|
uint8_t rx[MAX_DATA_READ];
|
|
|
|
static_assert(MAX_DATA_READ <= 100, "Too big to keep on stack");
|
|
|
|
if (!_block_read(MPUREG_FIFO_COUNTH, rx, 2)) {
|
|
hal.console->printf("MPU60x0: error in fifo read\n");
|
|
return;
|
|
}
|
|
|
|
bytes_read = uint16_val(rx, 0);
|
|
n_samples = bytes_read / MPU6000_SAMPLE_SIZE;
|
|
|
|
if (n_samples == 0) {
|
|
/* Not enough data in FIFO */
|
|
return;
|
|
}
|
|
|
|
if (n_samples > MPU6000_MAX_FIFO_SAMPLES) {
|
|
hal.console->printf("bytes_read = %u, n_samples %u > %u, dropping samples\n",
|
|
bytes_read, n_samples, MPU6000_MAX_FIFO_SAMPLES);
|
|
|
|
/* Too many samples, do a FIFO RESET */
|
|
_fifo_reset();
|
|
return;
|
|
}
|
|
|
|
if (!_block_read(MPUREG_FIFO_R_W, rx, n_samples * MPU6000_SAMPLE_SIZE)) {
|
|
hal.console->printf("MPU60x0: error in fifo read %u bytes\n",
|
|
n_samples * MPU6000_SAMPLE_SIZE);
|
|
return;
|
|
}
|
|
|
|
_accumulate(rx, n_samples);
|
|
}
|
|
|
|
void AP_InertialSensor_MPU6000::_read_sample()
|
|
{
|
|
/* one register address followed by seven 2-byte registers */
|
|
struct PACKED {
|
|
uint8_t int_status;
|
|
uint8_t d[14];
|
|
} rx;
|
|
|
|
if (!_block_read(MPUREG_INT_STATUS, (uint8_t *) &rx, sizeof(rx))) {
|
|
if (++_error_count > 4) {
|
|
// TODO: set bus speed low for this (and only this) device
|
|
hal.console->printf("MPU60x0: error reading sample\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
_accumulate(rx.d, 1);
|
|
}
|
|
|
|
bool AP_InertialSensor_MPU6000::_block_read(uint8_t reg, uint8_t *buf,
|
|
uint32_t size)
|
|
{
|
|
reg |= _read_flag;
|
|
return _dev->read_registers(reg, buf, size);
|
|
}
|
|
|
|
uint8_t AP_InertialSensor_MPU6000::_register_read(uint8_t reg)
|
|
{
|
|
uint8_t val = 0;
|
|
|
|
reg |= _read_flag;
|
|
_dev->read_registers(reg, &val, 1);
|
|
|
|
return val;
|
|
}
|
|
|
|
void AP_InertialSensor_MPU6000::_register_write(uint8_t reg, uint8_t val)
|
|
{
|
|
_dev->write_register(reg, val);
|
|
}
|
|
|
|
/*
|
|
useful when debugging SPI bus errors
|
|
*/
|
|
void AP_InertialSensor_MPU6000::_register_write_check(uint8_t reg, uint8_t val)
|
|
{
|
|
uint8_t readed;
|
|
_register_write(reg, val);
|
|
readed = _register_read(reg);
|
|
if (readed != val){
|
|
hal.console->printf("Values doesn't match; written: %02x; read: %02x ", val, readed);
|
|
}
|
|
#if MPU6000_DEBUG
|
|
hal.console->printf("Values written: %02x; readed: %02x ", val, readed);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
set the DLPF filter frequency. Assumes caller has taken semaphore
|
|
*/
|
|
void AP_InertialSensor_MPU6000::_set_filter_register(uint16_t filter_hz)
|
|
{
|
|
uint8_t filter;
|
|
// choose filtering frequency
|
|
if (filter_hz == 0) {
|
|
filter = BITS_DLPF_CFG_256HZ_NOLPF2;
|
|
} else if (filter_hz <= 5) {
|
|
filter = BITS_DLPF_CFG_5HZ;
|
|
} else if (filter_hz <= 10) {
|
|
filter = BITS_DLPF_CFG_10HZ;
|
|
} else if (filter_hz <= 20) {
|
|
filter = BITS_DLPF_CFG_20HZ;
|
|
} else if (filter_hz <= 42) {
|
|
filter = BITS_DLPF_CFG_42HZ;
|
|
} else if (filter_hz <= 98) {
|
|
filter = BITS_DLPF_CFG_98HZ;
|
|
} else {
|
|
filter = BITS_DLPF_CFG_256HZ_NOLPF2;
|
|
}
|
|
_register_write(MPUREG_CONFIG, filter);
|
|
}
|
|
|
|
|
|
bool AP_InertialSensor_MPU6000::_hardware_init(void)
|
|
{
|
|
if (!_dev->get_semaphore()->take(100)) {
|
|
AP_HAL::panic("MPU6000: Unable to get semaphore");
|
|
}
|
|
|
|
// initially run the bus at low speed
|
|
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
|
|
|
|
// Chip reset
|
|
uint8_t tries;
|
|
for (tries = 0; tries < 5; tries++) {
|
|
uint8_t user_ctrl = _register_read(MPUREG_USER_CTRL);
|
|
|
|
/* First disable the master I2C to avoid hanging the slaves on the
|
|
* aulixiliar I2C bus - it will be enabled again if the AuxiliaryBus
|
|
* is used */
|
|
if (user_ctrl & BIT_USER_CTRL_I2C_MST_EN) {
|
|
_register_write(MPUREG_USER_CTRL, user_ctrl & ~BIT_USER_CTRL_I2C_MST_EN);
|
|
hal.scheduler->delay(10);
|
|
}
|
|
|
|
/* reset device */
|
|
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET);
|
|
hal.scheduler->delay(100);
|
|
|
|
/* bus-dependent initialization */
|
|
if (_bus_type == BUS_TYPE_SPI) {
|
|
/* Disable I2C bus if SPI selected (Recommended in Datasheet to be
|
|
* done just after the device is reset) */
|
|
_register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS);
|
|
}
|
|
|
|
// Wake up device and select GyroZ clock. Note that the
|
|
// MPU6000 starts up in sleep mode, and it can take some time
|
|
// for it to come out of sleep
|
|
_register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO);
|
|
hal.scheduler->delay(5);
|
|
|
|
// check it has woken up
|
|
if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) {
|
|
break;
|
|
}
|
|
|
|
hal.scheduler->delay(10);
|
|
if (_data_ready()) {
|
|
break;
|
|
}
|
|
|
|
#if MPU6000_DEBUG
|
|
_dump_registers();
|
|
#endif
|
|
}
|
|
|
|
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
|
|
_dev->get_semaphore()->give();
|
|
|
|
if (tries == 5) {
|
|
hal.console->println("Failed to boot MPU6000 5 times");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#if MPU6000_DEBUG
|
|
// dump all config registers - used for debug
|
|
void AP_InertialSensor_MPU6000::_dump_registers(void)
|
|
{
|
|
hal.console->println("MPU6000 registers");
|
|
if (!_dev->get_semaphore()->take(100)) {
|
|
return;
|
|
}
|
|
|
|
for (uint8_t reg=MPUREG_PRODUCT_ID; reg<=108; reg++) {
|
|
uint8_t v = _register_read(reg);
|
|
hal.console->printf("%02x:%02x ", (unsigned)reg, (unsigned)v);
|
|
if ((reg - (MPUREG_PRODUCT_ID-1)) % 16 == 0) {
|
|
hal.console->println();
|
|
}
|
|
}
|
|
hal.console->println();
|
|
|
|
_dev->get_semaphore()->give();
|
|
}
|
|
#endif
|
|
|
|
AP_MPU6000_AuxiliaryBusSlave::AP_MPU6000_AuxiliaryBusSlave(AuxiliaryBus &bus, uint8_t addr,
|
|
uint8_t instance)
|
|
: AuxiliaryBusSlave(bus, addr, instance)
|
|
, _mpu6000_addr(MPUREG_I2C_SLV0_ADDR + _instance * 3)
|
|
, _mpu6000_reg(_mpu6000_addr + 1)
|
|
, _mpu6000_ctrl(_mpu6000_addr + 2)
|
|
, _mpu6000_do(MPUREG_I2C_SLV0_DO + _instance)
|
|
{
|
|
}
|
|
|
|
int AP_MPU6000_AuxiliaryBusSlave::_set_passthrough(uint8_t reg, uint8_t size,
|
|
uint8_t *out)
|
|
{
|
|
auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend());
|
|
uint8_t addr;
|
|
|
|
/* Ensure the slave read/write is disabled before changing the registers */
|
|
backend._register_write(_mpu6000_ctrl, 0);
|
|
|
|
if (out) {
|
|
backend._register_write(_mpu6000_do, *out);
|
|
addr = _addr;
|
|
} else {
|
|
addr = _addr | BIT_READ_FLAG;
|
|
}
|
|
|
|
backend._register_write(_mpu6000_addr, addr);
|
|
backend._register_write(_mpu6000_reg, reg);
|
|
backend._register_write(_mpu6000_ctrl, BIT_I2C_SLVX_EN | size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int AP_MPU6000_AuxiliaryBusSlave::passthrough_read(uint8_t reg, uint8_t *buf,
|
|
uint8_t size)
|
|
{
|
|
assert(buf);
|
|
|
|
if (_registered) {
|
|
hal.console->println("Error: can't passthrough when slave is already configured");
|
|
return -1;
|
|
}
|
|
|
|
int r = _set_passthrough(reg, size);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
|
|
/* wait the value to be read from the slave and read it back */
|
|
hal.scheduler->delay(10);
|
|
|
|
auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend());
|
|
backend._block_read(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, size);
|
|
|
|
/* disable new reads */
|
|
backend._register_write(_mpu6000_ctrl, 0);
|
|
|
|
return size;
|
|
}
|
|
|
|
int AP_MPU6000_AuxiliaryBusSlave::passthrough_write(uint8_t reg, uint8_t val)
|
|
{
|
|
if (_registered) {
|
|
hal.console->println("Error: can't passthrough when slave is already configured");
|
|
return -1;
|
|
}
|
|
|
|
int r = _set_passthrough(reg, 1, &val);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
|
|
/* wait the value to be written to the slave */
|
|
hal.scheduler->delay(10);
|
|
|
|
auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend());
|
|
|
|
/* disable new writes */
|
|
backend._register_write(_mpu6000_ctrl, 0);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int AP_MPU6000_AuxiliaryBusSlave::read(uint8_t *buf)
|
|
{
|
|
if (!_registered) {
|
|
hal.console->println("Error: can't read before configuring slave");
|
|
return -1;
|
|
}
|
|
|
|
auto &backend = AP_InertialSensor_MPU6000::from(_bus.get_backend());
|
|
if (!backend._block_read(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, _sample_size)) {
|
|
return -1;
|
|
}
|
|
|
|
return _sample_size;
|
|
}
|
|
|
|
/* MPU6000 provides up to 5 slave devices, but the 5th is way too different to
|
|
* configure and is seldom used */
|
|
AP_MPU6000_AuxiliaryBus::AP_MPU6000_AuxiliaryBus(AP_InertialSensor_MPU6000 &backend)
|
|
: AuxiliaryBus(backend, 4)
|
|
{
|
|
}
|
|
|
|
AP_HAL::Semaphore *AP_MPU6000_AuxiliaryBus::get_semaphore()
|
|
{
|
|
return static_cast<AP_InertialSensor_MPU6000&>(_ins_backend)._dev->get_semaphore();
|
|
}
|
|
|
|
AuxiliaryBusSlave *AP_MPU6000_AuxiliaryBus::_instantiate_slave(uint8_t addr, uint8_t instance)
|
|
{
|
|
/* Enable slaves on MPU6000 if this is the first time */
|
|
if (_ext_sens_data == 0) {
|
|
_configure_slaves();
|
|
}
|
|
|
|
return new AP_MPU6000_AuxiliaryBusSlave(*this, addr, instance);
|
|
}
|
|
|
|
void AP_MPU6000_AuxiliaryBus::_configure_slaves()
|
|
{
|
|
auto &backend = AP_InertialSensor_MPU6000::from(_ins_backend);
|
|
|
|
/* Enable the I2C master to slaves on the auxiliary I2C bus*/
|
|
uint8_t user_ctrl = backend._register_read(MPUREG_USER_CTRL);
|
|
backend._register_write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_I2C_MST_EN);
|
|
|
|
/* stop condition between reads; clock at 400kHz */
|
|
backend._register_write(MPUREG_I2C_MST_CTRL,
|
|
BIT_I2C_MST_P_NSR | BIT_I2C_MST_CLK_400KHZ);
|
|
|
|
/* Hard-code divider for internal sample rate, 1 kHz, resulting in a
|
|
* sample rate of 100Hz */
|
|
backend._register_write(MPUREG_I2C_SLV4_CTRL, 9);
|
|
|
|
/* All slaves are subject to the sample rate */
|
|
backend._register_write(MPUREG_I2C_MST_DELAY_CTRL,
|
|
BIT_I2C_SLV0_DLY_EN | BIT_I2C_SLV1_DLY_EN |
|
|
BIT_I2C_SLV2_DLY_EN | BIT_I2C_SLV3_DLY_EN);
|
|
}
|
|
|
|
int AP_MPU6000_AuxiliaryBus::_configure_periodic_read(AuxiliaryBusSlave *slave,
|
|
uint8_t reg, uint8_t size)
|
|
{
|
|
if (_ext_sens_data + size > MAX_EXT_SENS_DATA) {
|
|
return -1;
|
|
}
|
|
|
|
AP_MPU6000_AuxiliaryBusSlave *mpu_slave =
|
|
static_cast<AP_MPU6000_AuxiliaryBusSlave*>(slave);
|
|
mpu_slave->_set_passthrough(reg, size);
|
|
mpu_slave->_ext_sens_data = _ext_sens_data;
|
|
_ext_sens_data += size;
|
|
|
|
return 0;
|
|
}
|