1791 lines
111 KiB
C++
1791 lines
111 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#include "AP_NavEKF3.h"
|
|
#include "AP_NavEKF3_core.h"
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
#include <AP_Vehicle/AP_Vehicle.h>
|
|
#include <GCS_MAVLink/GCS.h>
|
|
#include <AP_GPS/AP_GPS.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// constructor
|
|
NavEKF3_core::NavEKF3_core(void) :
|
|
_perf_UpdateFilter(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_UpdateFilter")),
|
|
_perf_CovariancePrediction(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_CovariancePrediction")),
|
|
_perf_FuseVelPosNED(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_FuseVelPosNED")),
|
|
_perf_FuseMagnetometer(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_FuseMagnetometer")),
|
|
_perf_FuseAirspeed(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_FuseAirspeed")),
|
|
_perf_FuseSideslip(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_FuseSideslip")),
|
|
_perf_TerrainOffset(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_TerrainOffset")),
|
|
_perf_FuseOptFlow(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_FuseOptFlow")),
|
|
_perf_FuseBodyOdom(hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_FuseBodyOdom"))
|
|
{
|
|
_perf_test[0] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_Test0");
|
|
_perf_test[1] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_Test1");
|
|
_perf_test[2] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_Test2");
|
|
_perf_test[3] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_Test3");
|
|
_perf_test[4] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_Test4");
|
|
_perf_test[5] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_Test5");
|
|
_perf_test[6] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_Test6");
|
|
_perf_test[7] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_Test7");
|
|
_perf_test[8] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_Test8");
|
|
_perf_test[9] = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "EK3_Test9");
|
|
firstInitTime_ms = 0;
|
|
lastInitFailReport_ms = 0;
|
|
}
|
|
|
|
// setup this core backend
|
|
bool NavEKF3_core::setup_core(NavEKF3 *_frontend, uint8_t _imu_index, uint8_t _core_index)
|
|
{
|
|
frontend = _frontend;
|
|
imu_index = _imu_index;
|
|
core_index = _core_index;
|
|
_ahrs = frontend->_ahrs;
|
|
|
|
/*
|
|
The imu_buffer_length needs to cope with the worst case sensor delay at the
|
|
maximum fusion rate of 100Hz. Non-imu data coming in at faster than 100Hz is
|
|
downsampled. For 50Hz main loop rate we need a shorter buffer.
|
|
*/
|
|
|
|
// Calculate the expected EKF time step
|
|
if (AP::ins().get_sample_rate() > 0) {
|
|
dtEkfAvg = 1.0f / AP::ins().get_sample_rate();
|
|
dtEkfAvg = MAX(dtEkfAvg,EKF_TARGET_DT);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// find the maximum time delay for all potential sensors
|
|
uint16_t maxTimeDelay_ms = MAX(_frontend->_hgtDelay_ms ,
|
|
MAX(_frontend->_flowDelay_ms ,
|
|
MAX(_frontend->_rngBcnDelay_ms ,
|
|
MAX(_frontend->magDelay_ms ,
|
|
(uint16_t)(EKF_TARGET_DT_MS)
|
|
))));
|
|
|
|
// GPS sensing can have large delays and should not be included if disabled
|
|
if (_frontend->_fusionModeGPS != 3) {
|
|
// Wait for the configuration of all GPS units to be confirmed. Until this has occurred the GPS driver cannot provide a correct time delay
|
|
float gps_delay_sec = 0;
|
|
if (!AP::gps().get_lag(gps_delay_sec)) {
|
|
if (AP_HAL::millis() - lastInitFailReport_ms > 10000) {
|
|
lastInitFailReport_ms = AP_HAL::millis();
|
|
// provide an escalating series of messages
|
|
if (AP_HAL::millis() > 30000) {
|
|
gcs().send_text(MAV_SEVERITY_ERROR, "EKF3 waiting for GPS config data");
|
|
} else if (AP_HAL::millis() > 15000) {
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "EKF3 waiting for GPS config data");
|
|
} else {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 waiting for GPS config data");
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
// limit the time delay value from the GPS library to a max of 250 msec which is the max value the EKF has been tested for.
|
|
maxTimeDelay_ms = MAX(maxTimeDelay_ms , MIN((uint16_t)(gps_delay_sec * 1000.0f),250));
|
|
}
|
|
|
|
// airspeed sensing can have large delays and should not be included if disabled
|
|
if (_ahrs->airspeed_sensor_enabled()) {
|
|
maxTimeDelay_ms = MAX(maxTimeDelay_ms , _frontend->tasDelay_ms);
|
|
}
|
|
|
|
// calculate the IMU buffer length required to accommodate the maximum delay with some allowance for jitter
|
|
imu_buffer_length = (maxTimeDelay_ms / (uint16_t)(EKF_TARGET_DT_MS)) + 1;
|
|
|
|
// set the observation buffer length to handle the minimum time of arrival between observations in combination
|
|
// with the worst case delay from current time to ekf fusion time
|
|
// allow for worst case 50% extension of the ekf fusion time horizon delay due to timing jitter
|
|
uint16_t ekf_delay_ms = maxTimeDelay_ms + (int)(ceilf((float)maxTimeDelay_ms * 0.5f));
|
|
obs_buffer_length = (ekf_delay_ms / _frontend->sensorIntervalMin_ms) + 1;
|
|
|
|
// limit to be no longer than the IMU buffer (we can't process data faster than the EKF prediction rate)
|
|
obs_buffer_length = MIN(obs_buffer_length,imu_buffer_length);
|
|
|
|
// calculate buffer size for optical flow data
|
|
const uint8_t flow_buffer_length = MIN((ekf_delay_ms / _frontend->flowIntervalMin_ms) + 1, imu_buffer_length);
|
|
|
|
if(!storedGPS.init(obs_buffer_length)) {
|
|
return false;
|
|
}
|
|
if(!storedMag.init(obs_buffer_length)) {
|
|
return false;
|
|
}
|
|
if(!storedBaro.init(obs_buffer_length)) {
|
|
return false;
|
|
}
|
|
if(!storedTAS.init(obs_buffer_length)) {
|
|
return false;
|
|
}
|
|
if (!storedOF.init(flow_buffer_length)) {
|
|
return false;
|
|
}
|
|
if(!storedBodyOdm.init(obs_buffer_length)) {
|
|
return false;
|
|
}
|
|
if(!storedWheelOdm.init(imu_buffer_length)) { // initialise to same length of IMU to allow for multiple wheel sensors
|
|
return false;
|
|
}
|
|
// Note: the use of dual range finders potentially doubles the amount of data to be stored
|
|
if(!storedRange.init(MIN(2*obs_buffer_length , imu_buffer_length))) {
|
|
return false;
|
|
}
|
|
// Note: range beacon data is read one beacon at a time and can arrive at a high rate
|
|
if(!storedRangeBeacon.init(imu_buffer_length)) {
|
|
return false;
|
|
}
|
|
if(!storedIMU.init(imu_buffer_length)) {
|
|
return false;
|
|
}
|
|
if(!storedOutput.init(imu_buffer_length)) {
|
|
return false;
|
|
}
|
|
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u buffers, IMU=%u, OBS=%u, OF=%u, dt=%6.4f",
|
|
(unsigned)imu_index,
|
|
(unsigned)imu_buffer_length,
|
|
(unsigned)obs_buffer_length,
|
|
(unsigned)flow_buffer_length,
|
|
(double)dtEkfAvg);
|
|
return true;
|
|
}
|
|
|
|
|
|
/********************************************************
|
|
* INIT FUNCTIONS *
|
|
********************************************************/
|
|
|
|
// Use a function call rather than a constructor to initialise variables because it enables the filter to be re-started in flight if necessary.
|
|
void NavEKF3_core::InitialiseVariables()
|
|
{
|
|
// calculate the nominal filter update rate
|
|
const AP_InertialSensor &ins = AP::ins();
|
|
localFilterTimeStep_ms = (uint8_t)(1000*ins.get_loop_delta_t());
|
|
localFilterTimeStep_ms = MAX(localFilterTimeStep_ms, (uint8_t)EKF_TARGET_DT_MS);
|
|
|
|
// initialise time stamps
|
|
imuSampleTime_ms = frontend->imuSampleTime_us / 1000;
|
|
prevTasStep_ms = imuSampleTime_ms;
|
|
prevBetaStep_ms = imuSampleTime_ms;
|
|
lastBaroReceived_ms = imuSampleTime_ms;
|
|
lastVelPassTime_ms = 0;
|
|
lastPosPassTime_ms = 0;
|
|
lastHgtPassTime_ms = 0;
|
|
lastTasPassTime_ms = 0;
|
|
lastSynthYawTime_ms = imuSampleTime_ms;
|
|
lastTimeGpsReceived_ms = 0;
|
|
secondLastGpsTime_ms = 0;
|
|
lastDecayTime_ms = imuSampleTime_ms;
|
|
timeAtLastAuxEKF_ms = imuSampleTime_ms;
|
|
flowValidMeaTime_ms = imuSampleTime_ms;
|
|
rngValidMeaTime_ms = imuSampleTime_ms;
|
|
flowMeaTime_ms = 0;
|
|
prevFlowFuseTime_ms = 0;
|
|
gndHgtValidTime_ms = 0;
|
|
ekfStartTime_ms = imuSampleTime_ms;
|
|
lastGpsVelFail_ms = 0;
|
|
lastGpsAidBadTime_ms = 0;
|
|
timeTasReceived_ms = 0;
|
|
lastPreAlignGpsCheckTime_ms = imuSampleTime_ms;
|
|
lastPosReset_ms = 0;
|
|
lastVelReset_ms = 0;
|
|
lastPosResetD_ms = 0;
|
|
lastRngMeasTime_ms = 0;
|
|
terrainHgtStableSet_ms = 0;
|
|
|
|
// initialise other variables
|
|
gpsNoiseScaler = 1.0f;
|
|
hgtTimeout = true;
|
|
tasTimeout = true;
|
|
badIMUdata = false;
|
|
finalInflightYawInit = false;
|
|
dtIMUavg = ins.get_loop_delta_t();
|
|
dtEkfAvg = EKF_TARGET_DT;
|
|
dt = 0;
|
|
velDotNEDfilt.zero();
|
|
lastKnownPositionNE.zero();
|
|
prevTnb.zero();
|
|
memset(&P[0][0], 0, sizeof(P));
|
|
memset(&nextP[0][0], 0, sizeof(nextP));
|
|
flowDataValid = false;
|
|
rangeDataToFuse = false;
|
|
Popt = 0.0f;
|
|
terrainState = 0.0f;
|
|
prevPosN = stateStruct.position.x;
|
|
prevPosE = stateStruct.position.y;
|
|
inhibitGndState = false;
|
|
flowGyroBias.x = 0;
|
|
flowGyroBias.y = 0;
|
|
heldVelNE.zero();
|
|
PV_AidingMode = AID_NONE;
|
|
PV_AidingModePrev = AID_NONE;
|
|
posTimeout = true;
|
|
velTimeout = true;
|
|
memset(&faultStatus, 0, sizeof(faultStatus));
|
|
hgtRate = 0.0f;
|
|
onGround = true;
|
|
prevOnGround = true;
|
|
inFlight = false;
|
|
prevInFlight = false;
|
|
manoeuvring = false;
|
|
inhibitWindStates = true;
|
|
inhibitDelVelBiasStates = true;
|
|
inhibitDelAngBiasStates = true;
|
|
gndOffsetValid = false;
|
|
validOrigin = false;
|
|
takeoffExpectedSet_ms = 0;
|
|
expectGndEffectTakeoff = false;
|
|
touchdownExpectedSet_ms = 0;
|
|
expectGndEffectTouchdown = false;
|
|
gpsSpdAccuracy = 0.0f;
|
|
gpsPosAccuracy = 0.0f;
|
|
gpsHgtAccuracy = 0.0f;
|
|
baroHgtOffset = 0.0f;
|
|
yawResetAngle = 0.0f;
|
|
lastYawReset_ms = 0;
|
|
tiltAlignComplete = false;
|
|
yawAlignComplete = false;
|
|
stateIndexLim = 23;
|
|
baroStoreIndex = 0;
|
|
rangeStoreIndex = 0;
|
|
last_gps_idx = 0;
|
|
tasStoreIndex = 0;
|
|
ofStoreIndex = 0;
|
|
delAngCorrection.zero();
|
|
velErrintegral.zero();
|
|
posErrintegral.zero();
|
|
gpsGoodToAlign = false;
|
|
gpsNotAvailable = true;
|
|
motorsArmed = false;
|
|
prevMotorsArmed = false;
|
|
innovationIncrement = 0;
|
|
lastInnovation = 0;
|
|
memset(&gpsCheckStatus, 0, sizeof(gpsCheckStatus));
|
|
gpsSpdAccPass = false;
|
|
ekfInnovationsPass = false;
|
|
sAccFilterState1 = 0.0f;
|
|
sAccFilterState2 = 0.0f;
|
|
lastGpsCheckTime_ms = 0;
|
|
lastInnovPassTime_ms = 0;
|
|
lastInnovFailTime_ms = 0;
|
|
gpsAccuracyGood = false;
|
|
gpsloc_prev = {};
|
|
gpsDriftNE = 0.0f;
|
|
gpsVertVelFilt = 0.0f;
|
|
gpsHorizVelFilt = 0.0f;
|
|
memset(&statesArray, 0, sizeof(statesArray));
|
|
posDownDerivative = 0.0f;
|
|
posDown = 0.0f;
|
|
posVelFusionDelayed = false;
|
|
optFlowFusionDelayed = false;
|
|
flowFusionActive = false;
|
|
airSpdFusionDelayed = false;
|
|
sideSlipFusionDelayed = false;
|
|
posResetNE.zero();
|
|
velResetNE.zero();
|
|
posResetD = 0.0f;
|
|
hgtInnovFiltState = 0.0f;
|
|
imuDataDownSampledNew.delAng.zero();
|
|
imuDataDownSampledNew.delVel.zero();
|
|
imuDataDownSampledNew.delAngDT = 0.0f;
|
|
imuDataDownSampledNew.delVelDT = 0.0f;
|
|
runUpdates = false;
|
|
framesSincePredict = 0;
|
|
gpsYawResetRequest = false;
|
|
delAngBiasLearned = false;
|
|
memset(&filterStatus, 0, sizeof(filterStatus));
|
|
gpsInhibit = false;
|
|
activeHgtSource = 0;
|
|
memset(&rngMeasIndex, 0, sizeof(rngMeasIndex));
|
|
memset(&storedRngMeasTime_ms, 0, sizeof(storedRngMeasTime_ms));
|
|
memset(&storedRngMeas, 0, sizeof(storedRngMeas));
|
|
terrainHgtStable = true;
|
|
ekfOriginHgtVar = 0.0f;
|
|
ekfGpsRefHgt = 0.0;
|
|
velOffsetNED.zero();
|
|
posOffsetNED.zero();
|
|
posResetSource = DEFAULT;
|
|
velResetSource = DEFAULT;
|
|
|
|
// range beacon fusion variables
|
|
memset((void *)&rngBcnDataNew, 0, sizeof(rngBcnDataNew));
|
|
memset((void *)&rngBcnDataDelayed, 0, sizeof(rngBcnDataDelayed));
|
|
rngBcnStoreIndex = 0;
|
|
lastRngBcnPassTime_ms = 0;
|
|
rngBcnTestRatio = 0.0f;
|
|
rngBcnHealth = false;
|
|
rngBcnTimeout = true;
|
|
varInnovRngBcn = 0.0f;
|
|
innovRngBcn = 0.0f;
|
|
memset(&lastTimeRngBcn_ms, 0, sizeof(lastTimeRngBcn_ms));
|
|
rngBcnDataToFuse = false;
|
|
beaconVehiclePosNED.zero();
|
|
beaconVehiclePosErr = 1.0f;
|
|
rngBcnLast3DmeasTime_ms = 0;
|
|
rngBcnGoodToAlign = false;
|
|
lastRngBcnChecked = 0;
|
|
receiverPos.zero();
|
|
memset(&receiverPosCov, 0, sizeof(receiverPosCov));
|
|
rngBcnAlignmentStarted = false;
|
|
rngBcnAlignmentCompleted = false;
|
|
lastBeaconIndex = 0;
|
|
rngBcnPosSum.zero();
|
|
numBcnMeas = 0;
|
|
rngSum = 0.0f;
|
|
N_beacons = 0;
|
|
maxBcnPosD = 0.0f;
|
|
minBcnPosD = 0.0f;
|
|
bcnPosDownOffsetMax = 0.0f;
|
|
bcnPosOffsetMaxVar = 0.0f;
|
|
maxOffsetStateChangeFilt = 0.0f;
|
|
bcnPosDownOffsetMin = 0.0f;
|
|
bcnPosOffsetMinVar = 0.0f;
|
|
minOffsetStateChangeFilt = 0.0f;
|
|
rngBcnFuseDataReportIndex = 0;
|
|
memset(&rngBcnFusionReport, 0, sizeof(rngBcnFusionReport));
|
|
bcnPosOffsetNED.zero();
|
|
bcnOriginEstInit = false;
|
|
|
|
// body frame displacement fusion
|
|
memset((void *)&bodyOdmDataNew, 0, sizeof(bodyOdmDataNew));
|
|
memset((void *)&bodyOdmDataDelayed, 0, sizeof(bodyOdmDataDelayed));
|
|
lastbodyVelPassTime_ms = 0;
|
|
memset(&bodyVelTestRatio, 0, sizeof(bodyVelTestRatio));
|
|
memset(&varInnovBodyVel, 0, sizeof(varInnovBodyVel));
|
|
memset(&innovBodyVel, 0, sizeof(innovBodyVel));
|
|
prevBodyVelFuseTime_ms = 0;
|
|
bodyOdmMeasTime_ms = 0;
|
|
bodyVelFusionDelayed = false;
|
|
bodyVelFusionActive = false;
|
|
usingWheelSensors = false;
|
|
wheelOdmMeasTime_ms = 0;
|
|
|
|
// zero data buffers
|
|
storedIMU.reset();
|
|
storedGPS.reset();
|
|
storedBaro.reset();
|
|
storedTAS.reset();
|
|
storedRange.reset();
|
|
storedOutput.reset();
|
|
storedRangeBeacon.reset();
|
|
storedBodyOdm.reset();
|
|
storedWheelOdm.reset();
|
|
|
|
InitialiseVariablesMag();
|
|
}
|
|
|
|
|
|
// Use a function call rather than a constructor to initialise variables because it enables the filter to be re-started in flight if necessary.
|
|
void NavEKF3_core::InitialiseVariablesMag()
|
|
{
|
|
lastHealthyMagTime_ms = imuSampleTime_ms;
|
|
lastMagUpdate_us = 0;
|
|
magYawResetTimer_ms = imuSampleTime_ms;
|
|
magTimeout = false;
|
|
allMagSensorsFailed = false;
|
|
badMagYaw = false;
|
|
finalInflightMagInit = false;
|
|
mag_state.q0 = 1;
|
|
mag_state.DCM.identity();
|
|
inhibitMagStates = true;
|
|
magStoreIndex = 0;
|
|
if (_ahrs->get_compass()) {
|
|
magSelectIndex = _ahrs->get_compass()->get_primary();
|
|
}
|
|
lastMagOffsetsValid = false;
|
|
magStateResetRequest = false;
|
|
magStateInitComplete = false;
|
|
magYawResetRequest = false;
|
|
posDownAtLastMagReset = stateStruct.position.z;
|
|
yawInnovAtLastMagReset = 0.0f;
|
|
quatAtLastMagReset = stateStruct.quat;
|
|
magFieldLearned = false;
|
|
storedMag.reset();
|
|
}
|
|
|
|
// Initialise the states from accelerometer and magnetometer data (if present)
|
|
// This method can only be used when the vehicle is static
|
|
bool NavEKF3_core::InitialiseFilterBootstrap(void)
|
|
{
|
|
// If we are a plane and don't have GPS lock then don't initialise
|
|
if (assume_zero_sideslip() && AP::gps().status() < AP_GPS::GPS_OK_FIX_3D) {
|
|
hal.util->snprintf(prearm_fail_string,
|
|
sizeof(prearm_fail_string),
|
|
"EKF3 init failure: No GPS lock");
|
|
statesInitialised = false;
|
|
return false;
|
|
}
|
|
|
|
// read all the sensors required to start the EKF the states
|
|
readIMUData();
|
|
readMagData();
|
|
readGpsData();
|
|
readBaroData();
|
|
|
|
if (statesInitialised) {
|
|
// we are initialised, but we don't return true until the IMU
|
|
// buffer has been filled. This prevents a timing
|
|
// vulnerability with a pause in IMU data during filter startup
|
|
return storedIMU.is_filled();
|
|
}
|
|
|
|
// accumulate enough sensor data to fill the buffers
|
|
if (firstInitTime_ms == 0) {
|
|
firstInitTime_ms = imuSampleTime_ms;
|
|
return false;
|
|
} else if (imuSampleTime_ms - firstInitTime_ms < 1000) {
|
|
return false;
|
|
}
|
|
|
|
// set re-used variables to zero
|
|
InitialiseVariables();
|
|
|
|
// acceleration vector in XYZ body axes measured by the IMU (m/s^2)
|
|
Vector3f initAccVec;
|
|
|
|
// TODO we should average accel readings over several cycles
|
|
initAccVec = AP::ins().get_accel(imu_index);
|
|
|
|
// normalise the acceleration vector
|
|
float pitch=0, roll=0;
|
|
if (initAccVec.length() > 0.001f) {
|
|
initAccVec.normalize();
|
|
|
|
// calculate initial pitch angle
|
|
pitch = asinf(initAccVec.x);
|
|
|
|
// calculate initial roll angle
|
|
roll = atan2f(-initAccVec.y , -initAccVec.z);
|
|
}
|
|
|
|
// calculate initial roll and pitch orientation
|
|
stateStruct.quat.from_euler(roll, pitch, 0.0f);
|
|
|
|
// initialise dynamic states
|
|
stateStruct.velocity.zero();
|
|
stateStruct.position.zero();
|
|
|
|
// initialise static process model states
|
|
stateStruct.gyro_bias.zero();
|
|
stateStruct.accel_bias.zero();
|
|
stateStruct.wind_vel.zero();
|
|
stateStruct.earth_magfield.zero();
|
|
stateStruct.body_magfield.zero();
|
|
|
|
// set the position, velocity and height
|
|
ResetVelocity();
|
|
ResetPosition();
|
|
ResetHeight();
|
|
|
|
// define Earth rotation vector in the NED navigation frame
|
|
calcEarthRateNED(earthRateNED, _ahrs->get_home().lat);
|
|
|
|
// initialise the covariance matrix
|
|
CovarianceInit();
|
|
|
|
// reset the output predictor states
|
|
StoreOutputReset();
|
|
|
|
// set to true now that states have be initialised
|
|
statesInitialised = true;
|
|
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u initialised",(unsigned)imu_index);
|
|
|
|
// we initially return false to wait for the IMU buffer to fill
|
|
return false;
|
|
}
|
|
|
|
// initialise the covariance matrix
|
|
void NavEKF3_core::CovarianceInit()
|
|
{
|
|
// zero the matrix
|
|
memset(&P[0][0], 0, sizeof(P));
|
|
|
|
// define the initial angle uncertainty as variances for a rotation vector
|
|
Vector3f rot_vec_var;
|
|
rot_vec_var.x = rot_vec_var.y = rot_vec_var.z = sq(0.1f);
|
|
|
|
// update the quaternion state covariances
|
|
initialiseQuatCovariances(rot_vec_var);
|
|
|
|
// velocities
|
|
P[4][4] = sq(frontend->_gpsHorizVelNoise);
|
|
P[5][5] = P[4][4];
|
|
P[6][6] = sq(frontend->_gpsVertVelNoise);
|
|
// positions
|
|
P[7][7] = sq(frontend->_gpsHorizPosNoise);
|
|
P[8][8] = P[7][7];
|
|
P[9][9] = sq(frontend->_baroAltNoise);
|
|
// gyro delta angle biases
|
|
P[10][10] = sq(radians(InitialGyroBiasUncertainty() * dtEkfAvg));
|
|
P[11][11] = P[10][10];
|
|
P[12][12] = P[10][10];
|
|
// delta velocity biases
|
|
P[13][13] = sq(ACCEL_BIAS_LIM_SCALER * frontend->_accBiasLim * dtEkfAvg);
|
|
P[14][14] = P[13][13];
|
|
P[15][15] = P[13][13];
|
|
// earth magnetic field
|
|
P[16][16] = 0.0f;
|
|
P[17][17] = P[16][16];
|
|
P[18][18] = P[16][16];
|
|
// body magnetic field
|
|
P[19][19] = 0.0f;
|
|
P[20][20] = P[19][19];
|
|
P[21][21] = P[19][19];
|
|
// wind velocities
|
|
P[22][22] = 0.0f;
|
|
P[23][23] = P[22][22];
|
|
|
|
|
|
// optical flow ground height covariance
|
|
Popt = 0.25f;
|
|
|
|
}
|
|
|
|
/********************************************************
|
|
* UPDATE FUNCTIONS *
|
|
********************************************************/
|
|
// Update Filter States - this should be called whenever new IMU data is available
|
|
void NavEKF3_core::UpdateFilter(bool predict)
|
|
{
|
|
// Set the flag to indicate to the filter that the front-end has given permission for a new state prediction cycle to be started
|
|
startPredictEnabled = predict;
|
|
|
|
// don't run filter updates if states have not been initialised
|
|
if (!statesInitialised) {
|
|
return;
|
|
}
|
|
|
|
// start the timer used for load measurement
|
|
#if EK3_DISABLE_INTERRUPTS
|
|
irqstate_t istate = irqsave();
|
|
#endif
|
|
hal.util->perf_begin(_perf_UpdateFilter);
|
|
|
|
// TODO - in-flight restart method
|
|
|
|
// Check arm status and perform required checks and mode changes
|
|
controlFilterModes();
|
|
|
|
// read IMU data as delta angles and velocities
|
|
readIMUData();
|
|
|
|
// Run the EKF equations to estimate at the fusion time horizon if new IMU data is available in the buffer
|
|
if (runUpdates) {
|
|
// Predict states using IMU data from the delayed time horizon
|
|
UpdateStrapdownEquationsNED();
|
|
|
|
// Predict the covariance growth
|
|
CovariancePrediction();
|
|
|
|
// Update states using magnetometer data
|
|
SelectMagFusion();
|
|
|
|
// Update states using GPS and altimeter data
|
|
SelectVelPosFusion();
|
|
|
|
// Update states using range beacon data
|
|
SelectRngBcnFusion();
|
|
|
|
// Update states using optical flow data
|
|
SelectFlowFusion();
|
|
|
|
// Update states using body frame odometry data
|
|
SelectBodyOdomFusion();
|
|
|
|
// Update states using airspeed data
|
|
SelectTasFusion();
|
|
|
|
// Update states using sideslip constraint assumption for fly-forward vehicles
|
|
SelectBetaFusion();
|
|
|
|
// Update the filter status
|
|
updateFilterStatus();
|
|
}
|
|
|
|
// Wind output forward from the fusion to output time horizon
|
|
calcOutputStates();
|
|
|
|
// stop the timer used for load measurement
|
|
hal.util->perf_end(_perf_UpdateFilter);
|
|
#if EK3_DISABLE_INTERRUPTS
|
|
irqrestore(istate);
|
|
#endif
|
|
}
|
|
|
|
void NavEKF3_core::correctDeltaAngle(Vector3f &delAng, float delAngDT)
|
|
{
|
|
delAng -= stateStruct.gyro_bias * (delAngDT / dtEkfAvg);
|
|
}
|
|
|
|
void NavEKF3_core::correctDeltaVelocity(Vector3f &delVel, float delVelDT)
|
|
{
|
|
delVel -= stateStruct.accel_bias * (delVelDT / dtEkfAvg);
|
|
}
|
|
|
|
/*
|
|
* Update the quaternion, velocity and position states using delayed IMU measurements
|
|
* because the EKF is running on a delayed time horizon. Note that the quaternion is
|
|
* not used by the EKF equations, which instead estimate the error in the attitude of
|
|
* the vehicle when each observation is fused. This attitude error is then used to correct
|
|
* the quaternion.
|
|
*/
|
|
void NavEKF3_core::UpdateStrapdownEquationsNED()
|
|
{
|
|
// update the quaternion states by rotating from the previous attitude through
|
|
// the delta angle rotation quaternion and normalise
|
|
// apply correction for earth's rotation rate
|
|
// % * - and + operators have been overloaded
|
|
stateStruct.quat.rotate(delAngCorrected - prevTnb * earthRateNED*imuDataDelayed.delAngDT);
|
|
stateStruct.quat.normalize();
|
|
|
|
// transform body delta velocities to delta velocities in the nav frame
|
|
// use the nav frame from previous time step as the delta velocities
|
|
// have been rotated into that frame
|
|
// * and + operators have been overloaded
|
|
Vector3f delVelNav; // delta velocity vector in earth axes
|
|
delVelNav = prevTnb.mul_transpose(delVelCorrected);
|
|
delVelNav.z += GRAVITY_MSS*imuDataDelayed.delVelDT;
|
|
|
|
// calculate the body to nav cosine matrix
|
|
stateStruct.quat.inverse().rotation_matrix(prevTnb);
|
|
|
|
// calculate the rate of change of velocity (used for launch detect and other functions)
|
|
velDotNED = delVelNav / imuDataDelayed.delVelDT;
|
|
|
|
// apply a first order lowpass filter
|
|
velDotNEDfilt = velDotNED * 0.05f + velDotNEDfilt * 0.95f;
|
|
|
|
// calculate a magnitude of the filtered nav acceleration (required for GPS
|
|
// variance estimation)
|
|
accNavMag = velDotNEDfilt.length();
|
|
accNavMagHoriz = norm(velDotNEDfilt.x , velDotNEDfilt.y);
|
|
|
|
// if we are not aiding, then limit the horizontal magnitude of acceleration
|
|
// to prevent large manoeuvre transients disturbing the attitude
|
|
if ((PV_AidingMode == AID_NONE) && (accNavMagHoriz > 5.0f)) {
|
|
float gain = 5.0f/accNavMagHoriz;
|
|
delVelNav.x *= gain;
|
|
delVelNav.y *= gain;
|
|
}
|
|
|
|
// save velocity for use in trapezoidal integration for position calcuation
|
|
Vector3f lastVelocity = stateStruct.velocity;
|
|
|
|
// sum delta velocities to get velocity
|
|
stateStruct.velocity += delVelNav;
|
|
|
|
// apply a trapezoidal integration to velocities to calculate position
|
|
stateStruct.position += (stateStruct.velocity + lastVelocity) * (imuDataDelayed.delVelDT*0.5f);
|
|
|
|
// accumulate the bias delta angle and time since last reset by an OF measurement arrival
|
|
delAngBodyOF += delAngCorrected;
|
|
delTimeOF += imuDataDelayed.delAngDT;
|
|
|
|
// limit states to protect against divergence
|
|
ConstrainStates();
|
|
|
|
// If main filter velocity states are valid, update the range beacon receiver position states
|
|
if (filterStatus.flags.horiz_vel) {
|
|
receiverPos += (stateStruct.velocity + lastVelocity) * (imuDataDelayed.delVelDT*0.5f);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Propagate PVA solution forward from the fusion time horizon to the current time horizon
|
|
* using simple observer which performs two functions:
|
|
* 1) Corrects for the delayed time horizon used by the EKF.
|
|
* 2) Applies a LPF to state corrections to prevent 'stepping' in states due to measurement
|
|
* fusion introducing unwanted noise into the control loops.
|
|
* The inspiration for using a complementary filter to correct for time delays in the EKF
|
|
* is based on the work by A Khosravian.
|
|
*
|
|
* "Recursive Attitude Estimation in the Presence of Multi-rate and Multi-delay Vector Measurements"
|
|
* A Khosravian, J Trumpf, R Mahony, T Hamel, Australian National University
|
|
*/
|
|
void NavEKF3_core::calcOutputStates()
|
|
{
|
|
// apply corrections to the IMU data
|
|
Vector3f delAngNewCorrected = imuDataNew.delAng;
|
|
Vector3f delVelNewCorrected = imuDataNew.delVel;
|
|
correctDeltaAngle(delAngNewCorrected, imuDataNew.delAngDT);
|
|
correctDeltaVelocity(delVelNewCorrected, imuDataNew.delVelDT);
|
|
|
|
// apply corrections to track EKF solution
|
|
Vector3f delAng = delAngNewCorrected + delAngCorrection;
|
|
|
|
// convert the rotation vector to its equivalent quaternion
|
|
Quaternion deltaQuat;
|
|
deltaQuat.from_axis_angle(delAng);
|
|
|
|
// update the quaternion states by rotating from the previous attitude through
|
|
// the delta angle rotation quaternion and normalise
|
|
outputDataNew.quat *= deltaQuat;
|
|
outputDataNew.quat.normalize();
|
|
|
|
// calculate the body to nav cosine matrix
|
|
Matrix3f Tbn_temp;
|
|
outputDataNew.quat.rotation_matrix(Tbn_temp);
|
|
|
|
// transform body delta velocities to delta velocities in the nav frame
|
|
Vector3f delVelNav = Tbn_temp*delVelNewCorrected;
|
|
delVelNav.z += GRAVITY_MSS*imuDataNew.delVelDT;
|
|
|
|
// save velocity for use in trapezoidal integration for position calcuation
|
|
Vector3f lastVelocity = outputDataNew.velocity;
|
|
|
|
// sum delta velocities to get velocity
|
|
outputDataNew.velocity += delVelNav;
|
|
|
|
// apply a trapezoidal integration to velocities to calculate position
|
|
outputDataNew.position += (outputDataNew.velocity + lastVelocity) * (imuDataNew.delVelDT*0.5f);
|
|
|
|
// If the IMU accelerometer is offset from the body frame origin, then calculate corrections
|
|
// that can be added to the EKF velocity and position outputs so that they represent the velocity
|
|
// and position of the body frame origin.
|
|
// Note the * operator has been overloaded to operate as a dot product
|
|
if (!accelPosOffset.is_zero()) {
|
|
// calculate the average angular rate across the last IMU update
|
|
// note delAngDT is prevented from being zero in readIMUData()
|
|
Vector3f angRate = imuDataNew.delAng * (1.0f/imuDataNew.delAngDT);
|
|
|
|
// Calculate the velocity of the body frame origin relative to the IMU in body frame
|
|
// and rotate into earth frame. Note % operator has been overloaded to perform a cross product
|
|
Vector3f velBodyRelIMU = angRate % (- accelPosOffset);
|
|
velOffsetNED = Tbn_temp * velBodyRelIMU;
|
|
|
|
// calculate the earth frame position of the body frame origin relative to the IMU
|
|
posOffsetNED = Tbn_temp * (- accelPosOffset);
|
|
} else {
|
|
velOffsetNED.zero();
|
|
posOffsetNED.zero();
|
|
}
|
|
|
|
// store INS states in a ring buffer that with the same length and time coordinates as the IMU data buffer
|
|
if (runUpdates) {
|
|
// store the states at the output time horizon
|
|
storedOutput[storedIMU.get_youngest_index()] = outputDataNew;
|
|
|
|
// recall the states from the fusion time horizon
|
|
outputDataDelayed = storedOutput[storedIMU.get_oldest_index()];
|
|
|
|
// compare quaternion data with EKF quaternion at the fusion time horizon and calculate correction
|
|
|
|
// divide the demanded quaternion by the estimated to get the error
|
|
Quaternion quatErr = stateStruct.quat / outputDataDelayed.quat;
|
|
|
|
// Convert to a delta rotation using a small angle approximation
|
|
quatErr.normalize();
|
|
Vector3f deltaAngErr;
|
|
float scaler;
|
|
if (quatErr[0] >= 0.0f) {
|
|
scaler = 2.0f;
|
|
} else {
|
|
scaler = -2.0f;
|
|
}
|
|
deltaAngErr.x = scaler * quatErr[1];
|
|
deltaAngErr.y = scaler * quatErr[2];
|
|
deltaAngErr.z = scaler * quatErr[3];
|
|
|
|
// calculate a gain that provides tight tracking of the estimator states and
|
|
// adjust for changes in time delay to maintain consistent damping ratio of ~0.7
|
|
float timeDelay = 1e-3f * (float)(imuDataNew.time_ms - imuDataDelayed.time_ms);
|
|
timeDelay = MAX(timeDelay, dtIMUavg);
|
|
float errorGain = 0.5f / timeDelay;
|
|
|
|
// calculate a correction to the delta angle
|
|
// that will cause the INS to track the EKF quaternions
|
|
delAngCorrection = deltaAngErr * errorGain * dtIMUavg;
|
|
|
|
// calculate velocity and position tracking errors
|
|
Vector3f velErr = (stateStruct.velocity - outputDataDelayed.velocity);
|
|
Vector3f posErr = (stateStruct.position - outputDataDelayed.position);
|
|
|
|
// collect magnitude tracking error for diagnostics
|
|
outputTrackError.x = deltaAngErr.length();
|
|
outputTrackError.y = velErr.length();
|
|
outputTrackError.z = posErr.length();
|
|
|
|
// convert user specified time constant from centi-seconds to seconds
|
|
float tauPosVel = constrain_float(0.01f*(float)frontend->_tauVelPosOutput, 0.1f, 0.5f);
|
|
|
|
// calculate a gain to track the EKF position states with the specified time constant
|
|
float velPosGain = dtEkfAvg / constrain_float(tauPosVel, dtEkfAvg, 10.0f);
|
|
|
|
// use a PI feedback to calculate a correction that will be applied to the output state history
|
|
posErrintegral += posErr;
|
|
velErrintegral += velErr;
|
|
Vector3f velCorrection = velErr * velPosGain + velErrintegral * sq(velPosGain) * 0.1f;
|
|
Vector3f posCorrection = posErr * velPosGain + posErrintegral * sq(velPosGain) * 0.1f;
|
|
|
|
// loop through the output filter state history and apply the corrections to the velocity and position states
|
|
// this method is too expensive to use for the attitude states due to the quaternion operations required
|
|
// but does not introduce a time delay in the 'correction loop' and allows smaller tracking time constants
|
|
// to be used
|
|
output_elements outputStates;
|
|
for (unsigned index=0; index < imu_buffer_length; index++) {
|
|
outputStates = storedOutput[index];
|
|
|
|
// a constant velocity correction is applied
|
|
outputStates.velocity += velCorrection;
|
|
|
|
// a constant position correction is applied
|
|
outputStates.position += posCorrection;
|
|
|
|
// push the updated data to the buffer
|
|
storedOutput[index] = outputStates;
|
|
}
|
|
|
|
// update output state to corrected values
|
|
outputDataNew = storedOutput[storedIMU.get_youngest_index()];
|
|
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate the predicted state covariance matrix using algebraic equations generated with Matlab symbolic toolbox.
|
|
* The script file used to generate these and other equations in this filter can be found here:
|
|
* https://github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m
|
|
*/
|
|
void NavEKF3_core::CovariancePrediction()
|
|
{
|
|
hal.util->perf_begin(_perf_CovariancePrediction);
|
|
float daxVar; // X axis delta angle noise variance rad^2
|
|
float dayVar; // Y axis delta angle noise variance rad^2
|
|
float dazVar; // Z axis delta angle noise variance rad^2
|
|
float dvxVar; // X axis delta velocity variance noise (m/s)^2
|
|
float dvyVar; // Y axis delta velocity variance noise (m/s)^2
|
|
float dvzVar; // Z axis delta velocity variance noise (m/s)^2
|
|
float dvx; // X axis delta velocity (m/s)
|
|
float dvy; // Y axis delta velocity (m/s)
|
|
float dvz; // Z axis delta velocity (m/s)
|
|
float dax; // X axis delta angle (rad)
|
|
float day; // Y axis delta angle (rad)
|
|
float daz; // Z axis delta angle (rad)
|
|
float q0; // attitude quaternion
|
|
float q1; // attitude quaternion
|
|
float q2; // attitude quaternion
|
|
float q3; // attitude quaternion
|
|
float dax_b; // X axis delta angle measurement bias (rad)
|
|
float day_b; // Y axis delta angle measurement bias (rad)
|
|
float daz_b; // Z axis delta angle measurement bias (rad)
|
|
float dvx_b; // X axis delta velocity measurement bias (rad)
|
|
float dvy_b; // Y axis delta velocity measurement bias (rad)
|
|
float dvz_b; // Z axis delta velocity measurement bias (rad)
|
|
|
|
// Calculate the time step used by the covariance prediction as an average of the gyro and accel integration period
|
|
// Constrain to prevent bad timing jitter causing numerical conditioning problems with the covariance prediction
|
|
dt = constrain_float(0.5f*(imuDataDelayed.delAngDT+imuDataDelayed.delVelDT),0.5f * dtEkfAvg, 2.0f * dtEkfAvg);
|
|
|
|
// use filtered height rate to increase wind process noise when climbing or descending
|
|
// this allows for wind gradient effects.Filter height rate using a 10 second time constant filter
|
|
float alpha = 0.1f * dt;
|
|
hgtRate = hgtRate * (1.0f - alpha) - stateStruct.velocity.z * alpha;
|
|
|
|
// calculate covariance prediction process noise added to diagonals of predicted covariance matrix
|
|
// error growth of first 10 kinematic states is built into auto-code for covariance prediction and driven by IMU noise parameters
|
|
Vector14 processNoiseVariance = {};
|
|
|
|
if (!inhibitDelAngBiasStates) {
|
|
float dAngBiasVar = sq(sq(dt) * constrain_float(frontend->_gyroBiasProcessNoise, 0.0f, 1.0f));
|
|
for (uint8_t i=0; i<=2; i++) processNoiseVariance[i] = dAngBiasVar;
|
|
}
|
|
|
|
if (!inhibitDelVelBiasStates) {
|
|
float dVelBiasVar = sq(sq(dt) * constrain_float(frontend->_accelBiasProcessNoise, 0.0f, 1.0f));
|
|
for (uint8_t i=3; i<=5; i++) {
|
|
uint8_t stateIndex = i + 10;
|
|
if (P[stateIndex][stateIndex] > 1E-8f) {
|
|
processNoiseVariance[i] = dVelBiasVar;
|
|
} else {
|
|
// increase the process noise variance up to a maximum of 100 x the nominal value if the variance is below the target minimum
|
|
processNoiseVariance[i] = 10.0f * dVelBiasVar * (1e-8f / fmaxf(P[stateIndex][stateIndex],1e-9f));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!inhibitMagStates) {
|
|
float magEarthVar = sq(dt * constrain_float(frontend->_magEarthProcessNoise, 0.0f, 1.0f));
|
|
float magBodyVar = sq(dt * constrain_float(frontend->_magBodyProcessNoise, 0.0f, 1.0f));
|
|
for (uint8_t i=6; i<=8; i++) processNoiseVariance[i] = magEarthVar;
|
|
for (uint8_t i=9; i<=11; i++) processNoiseVariance[i] = magBodyVar;
|
|
}
|
|
|
|
if (!inhibitWindStates) {
|
|
float windVelVar = sq(dt * constrain_float(frontend->_windVelProcessNoise, 0.0f, 1.0f) * (1.0f + constrain_float(frontend->_wndVarHgtRateScale, 0.0f, 1.0f) * fabsf(hgtRate)));
|
|
for (uint8_t i=12; i<=13; i++) processNoiseVariance[i] = windVelVar;
|
|
}
|
|
|
|
// set variables used to calculate covariance growth
|
|
dvx = imuDataDelayed.delVel.x;
|
|
dvy = imuDataDelayed.delVel.y;
|
|
dvz = imuDataDelayed.delVel.z;
|
|
dax = imuDataDelayed.delAng.x;
|
|
day = imuDataDelayed.delAng.y;
|
|
daz = imuDataDelayed.delAng.z;
|
|
q0 = stateStruct.quat[0];
|
|
q1 = stateStruct.quat[1];
|
|
q2 = stateStruct.quat[2];
|
|
q3 = stateStruct.quat[3];
|
|
dax_b = stateStruct.gyro_bias.x;
|
|
day_b = stateStruct.gyro_bias.y;
|
|
daz_b = stateStruct.gyro_bias.z;
|
|
dvx_b = stateStruct.accel_bias.x;
|
|
dvy_b = stateStruct.accel_bias.y;
|
|
dvz_b = stateStruct.accel_bias.z;
|
|
float _gyrNoise = constrain_float(frontend->_gyrNoise, 0.0f, 1.0f);
|
|
daxVar = dayVar = dazVar = sq(dt*_gyrNoise);
|
|
float _accNoise = constrain_float(frontend->_accNoise, 0.0f, 10.0f);
|
|
dvxVar = dvyVar = dvzVar = sq(dt*_accNoise);
|
|
|
|
// calculate the predicted covariance due to inertial sensor error propagation
|
|
// we calculate the lower diagonal and copy to take advantage of symmetry
|
|
|
|
// intermediate calculations
|
|
Vector21 SF;
|
|
SF[0] = dvz - dvz_b;
|
|
SF[1] = dvy - dvy_b;
|
|
SF[2] = dvx - dvx_b;
|
|
SF[3] = 2*q1*SF[2] + 2*q2*SF[1] + 2*q3*SF[0];
|
|
SF[4] = 2*q0*SF[1] - 2*q1*SF[0] + 2*q3*SF[2];
|
|
SF[5] = 2*q0*SF[2] + 2*q2*SF[0] - 2*q3*SF[1];
|
|
SF[6] = day/2 - day_b/2;
|
|
SF[7] = daz/2 - daz_b/2;
|
|
SF[8] = dax/2 - dax_b/2;
|
|
SF[9] = dax_b/2 - dax/2;
|
|
SF[10] = daz_b/2 - daz/2;
|
|
SF[11] = day_b/2 - day/2;
|
|
SF[12] = 2*q1*SF[1];
|
|
SF[13] = 2*q0*SF[0];
|
|
SF[14] = q1/2;
|
|
SF[15] = q2/2;
|
|
SF[16] = q3/2;
|
|
SF[17] = sq(q3);
|
|
SF[18] = sq(q2);
|
|
SF[19] = sq(q1);
|
|
SF[20] = sq(q0);
|
|
|
|
Vector8 SG;
|
|
SG[0] = q0/2;
|
|
SG[1] = sq(q3);
|
|
SG[2] = sq(q2);
|
|
SG[3] = sq(q1);
|
|
SG[4] = sq(q0);
|
|
SG[5] = 2*q2*q3;
|
|
SG[6] = 2*q1*q3;
|
|
SG[7] = 2*q1*q2;
|
|
|
|
Vector11 SQ;
|
|
SQ[0] = dvzVar*(SG[5] - 2*q0*q1)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvyVar*(SG[5] + 2*q0*q1)*(SG[1] - SG[2] + SG[3] - SG[4]) + dvxVar*(SG[6] - 2*q0*q2)*(SG[7] + 2*q0*q3);
|
|
SQ[1] = dvzVar*(SG[6] + 2*q0*q2)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvxVar*(SG[6] - 2*q0*q2)*(SG[1] + SG[2] - SG[3] - SG[4]) + dvyVar*(SG[5] + 2*q0*q1)*(SG[7] - 2*q0*q3);
|
|
SQ[2] = dvzVar*(SG[5] - 2*q0*q1)*(SG[6] + 2*q0*q2) - dvyVar*(SG[7] - 2*q0*q3)*(SG[1] - SG[2] + SG[3] - SG[4]) - dvxVar*(SG[7] + 2*q0*q3)*(SG[1] + SG[2] - SG[3] - SG[4]);
|
|
SQ[3] = (dayVar*q1*SG[0])/2 - (dazVar*q1*SG[0])/2 - (daxVar*q2*q3)/4;
|
|
SQ[4] = (dazVar*q2*SG[0])/2 - (daxVar*q2*SG[0])/2 - (dayVar*q1*q3)/4;
|
|
SQ[5] = (daxVar*q3*SG[0])/2 - (dayVar*q3*SG[0])/2 - (dazVar*q1*q2)/4;
|
|
SQ[6] = (daxVar*q1*q2)/4 - (dazVar*q3*SG[0])/2 - (dayVar*q1*q2)/4;
|
|
SQ[7] = (dazVar*q1*q3)/4 - (daxVar*q1*q3)/4 - (dayVar*q2*SG[0])/2;
|
|
SQ[8] = (dayVar*q2*q3)/4 - (daxVar*q1*SG[0])/2 - (dazVar*q2*q3)/4;
|
|
SQ[9] = sq(SG[0]);
|
|
SQ[10] = sq(q1);
|
|
|
|
Vector11 SPP;
|
|
SPP[0] = SF[12] + SF[13] - 2*q2*SF[2];
|
|
SPP[1] = SF[17] - SF[18] - SF[19] + SF[20];
|
|
SPP[2] = SF[17] - SF[18] + SF[19] - SF[20];
|
|
SPP[3] = SF[17] + SF[18] - SF[19] - SF[20];
|
|
SPP[4] = 2*q0*q2 - 2*q1*q3;
|
|
SPP[5] = 2*q0*q1 - 2*q2*q3;
|
|
SPP[6] = 2*q0*q3 - 2*q1*q2;
|
|
SPP[7] = 2*q0*q1 + 2*q2*q3;
|
|
SPP[8] = 2*q0*q3 + 2*q1*q2;
|
|
SPP[9] = 2*q0*q2 + 2*q1*q3;
|
|
SPP[10] = SF[16];
|
|
|
|
|
|
nextP[0][0] = P[0][0] + P[1][0]*SF[9] + P[2][0]*SF[11] + P[3][0]*SF[10] + P[10][0]*SF[14] + P[11][0]*SF[15] + P[12][0]*SPP[10] + (daxVar*SQ[10])/4 + SF[9]*(P[0][1] + P[1][1]*SF[9] + P[2][1]*SF[11] + P[3][1]*SF[10] + P[10][1]*SF[14] + P[11][1]*SF[15] + P[12][1]*SPP[10]) + SF[11]*(P[0][2] + P[1][2]*SF[9] + P[2][2]*SF[11] + P[3][2]*SF[10] + P[10][2]*SF[14] + P[11][2]*SF[15] + P[12][2]*SPP[10]) + SF[10]*(P[0][3] + P[1][3]*SF[9] + P[2][3]*SF[11] + P[3][3]*SF[10] + P[10][3]*SF[14] + P[11][3]*SF[15] + P[12][3]*SPP[10]) + SF[14]*(P[0][10] + P[1][10]*SF[9] + P[2][10]*SF[11] + P[3][10]*SF[10] + P[10][10]*SF[14] + P[11][10]*SF[15] + P[12][10]*SPP[10]) + SF[15]*(P[0][11] + P[1][11]*SF[9] + P[2][11]*SF[11] + P[3][11]*SF[10] + P[10][11]*SF[14] + P[11][11]*SF[15] + P[12][11]*SPP[10]) + SPP[10]*(P[0][12] + P[1][12]*SF[9] + P[2][12]*SF[11] + P[3][12]*SF[10] + P[10][12]*SF[14] + P[11][12]*SF[15] + P[12][12]*SPP[10]) + (dayVar*sq(q2))/4 + (dazVar*sq(q3))/4;
|
|
nextP[0][1] = P[0][1] + SQ[8] + P[1][1]*SF[9] + P[2][1]*SF[11] + P[3][1]*SF[10] + P[10][1]*SF[14] + P[11][1]*SF[15] + P[12][1]*SPP[10] + SF[8]*(P[0][0] + P[1][0]*SF[9] + P[2][0]*SF[11] + P[3][0]*SF[10] + P[10][0]*SF[14] + P[11][0]*SF[15] + P[12][0]*SPP[10]) + SF[7]*(P[0][2] + P[1][2]*SF[9] + P[2][2]*SF[11] + P[3][2]*SF[10] + P[10][2]*SF[14] + P[11][2]*SF[15] + P[12][2]*SPP[10]) + SF[11]*(P[0][3] + P[1][3]*SF[9] + P[2][3]*SF[11] + P[3][3]*SF[10] + P[10][3]*SF[14] + P[11][3]*SF[15] + P[12][3]*SPP[10]) - SF[15]*(P[0][12] + P[1][12]*SF[9] + P[2][12]*SF[11] + P[3][12]*SF[10] + P[10][12]*SF[14] + P[11][12]*SF[15] + P[12][12]*SPP[10]) + SPP[10]*(P[0][11] + P[1][11]*SF[9] + P[2][11]*SF[11] + P[3][11]*SF[10] + P[10][11]*SF[14] + P[11][11]*SF[15] + P[12][11]*SPP[10]) - (q0*(P[0][10] + P[1][10]*SF[9] + P[2][10]*SF[11] + P[3][10]*SF[10] + P[10][10]*SF[14] + P[11][10]*SF[15] + P[12][10]*SPP[10]))/2;
|
|
nextP[1][1] = P[1][1] + P[0][1]*SF[8] + P[2][1]*SF[7] + P[3][1]*SF[11] - P[12][1]*SF[15] + P[11][1]*SPP[10] + daxVar*SQ[9] - (P[10][1]*q0)/2 + SF[8]*(P[1][0] + P[0][0]*SF[8] + P[2][0]*SF[7] + P[3][0]*SF[11] - P[12][0]*SF[15] + P[11][0]*SPP[10] - (P[10][0]*q0)/2) + SF[7]*(P[1][2] + P[0][2]*SF[8] + P[2][2]*SF[7] + P[3][2]*SF[11] - P[12][2]*SF[15] + P[11][2]*SPP[10] - (P[10][2]*q0)/2) + SF[11]*(P[1][3] + P[0][3]*SF[8] + P[2][3]*SF[7] + P[3][3]*SF[11] - P[12][3]*SF[15] + P[11][3]*SPP[10] - (P[10][3]*q0)/2) - SF[15]*(P[1][12] + P[0][12]*SF[8] + P[2][12]*SF[7] + P[3][12]*SF[11] - P[12][12]*SF[15] + P[11][12]*SPP[10] - (P[10][12]*q0)/2) + SPP[10]*(P[1][11] + P[0][11]*SF[8] + P[2][11]*SF[7] + P[3][11]*SF[11] - P[12][11]*SF[15] + P[11][11]*SPP[10] - (P[10][11]*q0)/2) + (dayVar*sq(q3))/4 + (dazVar*sq(q2))/4 - (q0*(P[1][10] + P[0][10]*SF[8] + P[2][10]*SF[7] + P[3][10]*SF[11] - P[12][10]*SF[15] + P[11][10]*SPP[10] - (P[10][10]*q0)/2))/2;
|
|
nextP[0][2] = P[0][2] + SQ[7] + P[1][2]*SF[9] + P[2][2]*SF[11] + P[3][2]*SF[10] + P[10][2]*SF[14] + P[11][2]*SF[15] + P[12][2]*SPP[10] + SF[6]*(P[0][0] + P[1][0]*SF[9] + P[2][0]*SF[11] + P[3][0]*SF[10] + P[10][0]*SF[14] + P[11][0]*SF[15] + P[12][0]*SPP[10]) + SF[10]*(P[0][1] + P[1][1]*SF[9] + P[2][1]*SF[11] + P[3][1]*SF[10] + P[10][1]*SF[14] + P[11][1]*SF[15] + P[12][1]*SPP[10]) + SF[8]*(P[0][3] + P[1][3]*SF[9] + P[2][3]*SF[11] + P[3][3]*SF[10] + P[10][3]*SF[14] + P[11][3]*SF[15] + P[12][3]*SPP[10]) + SF[14]*(P[0][12] + P[1][12]*SF[9] + P[2][12]*SF[11] + P[3][12]*SF[10] + P[10][12]*SF[14] + P[11][12]*SF[15] + P[12][12]*SPP[10]) - SPP[10]*(P[0][10] + P[1][10]*SF[9] + P[2][10]*SF[11] + P[3][10]*SF[10] + P[10][10]*SF[14] + P[11][10]*SF[15] + P[12][10]*SPP[10]) - (q0*(P[0][11] + P[1][11]*SF[9] + P[2][11]*SF[11] + P[3][11]*SF[10] + P[10][11]*SF[14] + P[11][11]*SF[15] + P[12][11]*SPP[10]))/2;
|
|
nextP[1][2] = P[1][2] + SQ[5] + P[0][2]*SF[8] + P[2][2]*SF[7] + P[3][2]*SF[11] - P[12][2]*SF[15] + P[11][2]*SPP[10] - (P[10][2]*q0)/2 + SF[6]*(P[1][0] + P[0][0]*SF[8] + P[2][0]*SF[7] + P[3][0]*SF[11] - P[12][0]*SF[15] + P[11][0]*SPP[10] - (P[10][0]*q0)/2) + SF[10]*(P[1][1] + P[0][1]*SF[8] + P[2][1]*SF[7] + P[3][1]*SF[11] - P[12][1]*SF[15] + P[11][1]*SPP[10] - (P[10][1]*q0)/2) + SF[8]*(P[1][3] + P[0][3]*SF[8] + P[2][3]*SF[7] + P[3][3]*SF[11] - P[12][3]*SF[15] + P[11][3]*SPP[10] - (P[10][3]*q0)/2) + SF[14]*(P[1][12] + P[0][12]*SF[8] + P[2][12]*SF[7] + P[3][12]*SF[11] - P[12][12]*SF[15] + P[11][12]*SPP[10] - (P[10][12]*q0)/2) - SPP[10]*(P[1][10] + P[0][10]*SF[8] + P[2][10]*SF[7] + P[3][10]*SF[11] - P[12][10]*SF[15] + P[11][10]*SPP[10] - (P[10][10]*q0)/2) - (q0*(P[1][11] + P[0][11]*SF[8] + P[2][11]*SF[7] + P[3][11]*SF[11] - P[12][11]*SF[15] + P[11][11]*SPP[10] - (P[10][11]*q0)/2))/2;
|
|
nextP[2][2] = P[2][2] + P[0][2]*SF[6] + P[1][2]*SF[10] + P[3][2]*SF[8] + P[12][2]*SF[14] - P[10][2]*SPP[10] + dayVar*SQ[9] + (dazVar*SQ[10])/4 - (P[11][2]*q0)/2 + SF[6]*(P[2][0] + P[0][0]*SF[6] + P[1][0]*SF[10] + P[3][0]*SF[8] + P[12][0]*SF[14] - P[10][0]*SPP[10] - (P[11][0]*q0)/2) + SF[10]*(P[2][1] + P[0][1]*SF[6] + P[1][1]*SF[10] + P[3][1]*SF[8] + P[12][1]*SF[14] - P[10][1]*SPP[10] - (P[11][1]*q0)/2) + SF[8]*(P[2][3] + P[0][3]*SF[6] + P[1][3]*SF[10] + P[3][3]*SF[8] + P[12][3]*SF[14] - P[10][3]*SPP[10] - (P[11][3]*q0)/2) + SF[14]*(P[2][12] + P[0][12]*SF[6] + P[1][12]*SF[10] + P[3][12]*SF[8] + P[12][12]*SF[14] - P[10][12]*SPP[10] - (P[11][12]*q0)/2) - SPP[10]*(P[2][10] + P[0][10]*SF[6] + P[1][10]*SF[10] + P[3][10]*SF[8] + P[12][10]*SF[14] - P[10][10]*SPP[10] - (P[11][10]*q0)/2) + (daxVar*sq(q3))/4 - (q0*(P[2][11] + P[0][11]*SF[6] + P[1][11]*SF[10] + P[3][11]*SF[8] + P[12][11]*SF[14] - P[10][11]*SPP[10] - (P[11][11]*q0)/2))/2;
|
|
nextP[0][3] = P[0][3] + SQ[6] + P[1][3]*SF[9] + P[2][3]*SF[11] + P[3][3]*SF[10] + P[10][3]*SF[14] + P[11][3]*SF[15] + P[12][3]*SPP[10] + SF[7]*(P[0][0] + P[1][0]*SF[9] + P[2][0]*SF[11] + P[3][0]*SF[10] + P[10][0]*SF[14] + P[11][0]*SF[15] + P[12][0]*SPP[10]) + SF[6]*(P[0][1] + P[1][1]*SF[9] + P[2][1]*SF[11] + P[3][1]*SF[10] + P[10][1]*SF[14] + P[11][1]*SF[15] + P[12][1]*SPP[10]) + SF[9]*(P[0][2] + P[1][2]*SF[9] + P[2][2]*SF[11] + P[3][2]*SF[10] + P[10][2]*SF[14] + P[11][2]*SF[15] + P[12][2]*SPP[10]) + SF[15]*(P[0][10] + P[1][10]*SF[9] + P[2][10]*SF[11] + P[3][10]*SF[10] + P[10][10]*SF[14] + P[11][10]*SF[15] + P[12][10]*SPP[10]) - SF[14]*(P[0][11] + P[1][11]*SF[9] + P[2][11]*SF[11] + P[3][11]*SF[10] + P[10][11]*SF[14] + P[11][11]*SF[15] + P[12][11]*SPP[10]) - (q0*(P[0][12] + P[1][12]*SF[9] + P[2][12]*SF[11] + P[3][12]*SF[10] + P[10][12]*SF[14] + P[11][12]*SF[15] + P[12][12]*SPP[10]))/2;
|
|
nextP[1][3] = P[1][3] + SQ[4] + P[0][3]*SF[8] + P[2][3]*SF[7] + P[3][3]*SF[11] - P[12][3]*SF[15] + P[11][3]*SPP[10] - (P[10][3]*q0)/2 + SF[7]*(P[1][0] + P[0][0]*SF[8] + P[2][0]*SF[7] + P[3][0]*SF[11] - P[12][0]*SF[15] + P[11][0]*SPP[10] - (P[10][0]*q0)/2) + SF[6]*(P[1][1] + P[0][1]*SF[8] + P[2][1]*SF[7] + P[3][1]*SF[11] - P[12][1]*SF[15] + P[11][1]*SPP[10] - (P[10][1]*q0)/2) + SF[9]*(P[1][2] + P[0][2]*SF[8] + P[2][2]*SF[7] + P[3][2]*SF[11] - P[12][2]*SF[15] + P[11][2]*SPP[10] - (P[10][2]*q0)/2) + SF[15]*(P[1][10] + P[0][10]*SF[8] + P[2][10]*SF[7] + P[3][10]*SF[11] - P[12][10]*SF[15] + P[11][10]*SPP[10] - (P[10][10]*q0)/2) - SF[14]*(P[1][11] + P[0][11]*SF[8] + P[2][11]*SF[7] + P[3][11]*SF[11] - P[12][11]*SF[15] + P[11][11]*SPP[10] - (P[10][11]*q0)/2) - (q0*(P[1][12] + P[0][12]*SF[8] + P[2][12]*SF[7] + P[3][12]*SF[11] - P[12][12]*SF[15] + P[11][12]*SPP[10] - (P[10][12]*q0)/2))/2;
|
|
nextP[2][3] = P[2][3] + SQ[3] + P[0][3]*SF[6] + P[1][3]*SF[10] + P[3][3]*SF[8] + P[12][3]*SF[14] - P[10][3]*SPP[10] - (P[11][3]*q0)/2 + SF[7]*(P[2][0] + P[0][0]*SF[6] + P[1][0]*SF[10] + P[3][0]*SF[8] + P[12][0]*SF[14] - P[10][0]*SPP[10] - (P[11][0]*q0)/2) + SF[6]*(P[2][1] + P[0][1]*SF[6] + P[1][1]*SF[10] + P[3][1]*SF[8] + P[12][1]*SF[14] - P[10][1]*SPP[10] - (P[11][1]*q0)/2) + SF[9]*(P[2][2] + P[0][2]*SF[6] + P[1][2]*SF[10] + P[3][2]*SF[8] + P[12][2]*SF[14] - P[10][2]*SPP[10] - (P[11][2]*q0)/2) + SF[15]*(P[2][10] + P[0][10]*SF[6] + P[1][10]*SF[10] + P[3][10]*SF[8] + P[12][10]*SF[14] - P[10][10]*SPP[10] - (P[11][10]*q0)/2) - SF[14]*(P[2][11] + P[0][11]*SF[6] + P[1][11]*SF[10] + P[3][11]*SF[8] + P[12][11]*SF[14] - P[10][11]*SPP[10] - (P[11][11]*q0)/2) - (q0*(P[2][12] + P[0][12]*SF[6] + P[1][12]*SF[10] + P[3][12]*SF[8] + P[12][12]*SF[14] - P[10][12]*SPP[10] - (P[11][12]*q0)/2))/2;
|
|
nextP[3][3] = P[3][3] + P[0][3]*SF[7] + P[1][3]*SF[6] + P[2][3]*SF[9] + P[10][3]*SF[15] - P[11][3]*SF[14] + (dayVar*SQ[10])/4 + dazVar*SQ[9] - (P[12][3]*q0)/2 + SF[7]*(P[3][0] + P[0][0]*SF[7] + P[1][0]*SF[6] + P[2][0]*SF[9] + P[10][0]*SF[15] - P[11][0]*SF[14] - (P[12][0]*q0)/2) + SF[6]*(P[3][1] + P[0][1]*SF[7] + P[1][1]*SF[6] + P[2][1]*SF[9] + P[10][1]*SF[15] - P[11][1]*SF[14] - (P[12][1]*q0)/2) + SF[9]*(P[3][2] + P[0][2]*SF[7] + P[1][2]*SF[6] + P[2][2]*SF[9] + P[10][2]*SF[15] - P[11][2]*SF[14] - (P[12][2]*q0)/2) + SF[15]*(P[3][10] + P[0][10]*SF[7] + P[1][10]*SF[6] + P[2][10]*SF[9] + P[10][10]*SF[15] - P[11][10]*SF[14] - (P[12][10]*q0)/2) - SF[14]*(P[3][11] + P[0][11]*SF[7] + P[1][11]*SF[6] + P[2][11]*SF[9] + P[10][11]*SF[15] - P[11][11]*SF[14] - (P[12][11]*q0)/2) + (daxVar*sq(q2))/4 - (q0*(P[3][12] + P[0][12]*SF[7] + P[1][12]*SF[6] + P[2][12]*SF[9] + P[10][12]*SF[15] - P[11][12]*SF[14] - (P[12][12]*q0)/2))/2;
|
|
nextP[0][4] = P[0][4] + P[1][4]*SF[9] + P[2][4]*SF[11] + P[3][4]*SF[10] + P[10][4]*SF[14] + P[11][4]*SF[15] + P[12][4]*SPP[10] + SF[5]*(P[0][0] + P[1][0]*SF[9] + P[2][0]*SF[11] + P[3][0]*SF[10] + P[10][0]*SF[14] + P[11][0]*SF[15] + P[12][0]*SPP[10]) + SF[3]*(P[0][1] + P[1][1]*SF[9] + P[2][1]*SF[11] + P[3][1]*SF[10] + P[10][1]*SF[14] + P[11][1]*SF[15] + P[12][1]*SPP[10]) - SF[4]*(P[0][3] + P[1][3]*SF[9] + P[2][3]*SF[11] + P[3][3]*SF[10] + P[10][3]*SF[14] + P[11][3]*SF[15] + P[12][3]*SPP[10]) + SPP[0]*(P[0][2] + P[1][2]*SF[9] + P[2][2]*SF[11] + P[3][2]*SF[10] + P[10][2]*SF[14] + P[11][2]*SF[15] + P[12][2]*SPP[10]) + SPP[3]*(P[0][13] + P[1][13]*SF[9] + P[2][13]*SF[11] + P[3][13]*SF[10] + P[10][13]*SF[14] + P[11][13]*SF[15] + P[12][13]*SPP[10]) + SPP[6]*(P[0][14] + P[1][14]*SF[9] + P[2][14]*SF[11] + P[3][14]*SF[10] + P[10][14]*SF[14] + P[11][14]*SF[15] + P[12][14]*SPP[10]) - SPP[9]*(P[0][15] + P[1][15]*SF[9] + P[2][15]*SF[11] + P[3][15]*SF[10] + P[10][15]*SF[14] + P[11][15]*SF[15] + P[12][15]*SPP[10]);
|
|
nextP[1][4] = P[1][4] + P[0][4]*SF[8] + P[2][4]*SF[7] + P[3][4]*SF[11] - P[12][4]*SF[15] + P[11][4]*SPP[10] - (P[10][4]*q0)/2 + SF[5]*(P[1][0] + P[0][0]*SF[8] + P[2][0]*SF[7] + P[3][0]*SF[11] - P[12][0]*SF[15] + P[11][0]*SPP[10] - (P[10][0]*q0)/2) + SF[3]*(P[1][1] + P[0][1]*SF[8] + P[2][1]*SF[7] + P[3][1]*SF[11] - P[12][1]*SF[15] + P[11][1]*SPP[10] - (P[10][1]*q0)/2) - SF[4]*(P[1][3] + P[0][3]*SF[8] + P[2][3]*SF[7] + P[3][3]*SF[11] - P[12][3]*SF[15] + P[11][3]*SPP[10] - (P[10][3]*q0)/2) + SPP[0]*(P[1][2] + P[0][2]*SF[8] + P[2][2]*SF[7] + P[3][2]*SF[11] - P[12][2]*SF[15] + P[11][2]*SPP[10] - (P[10][2]*q0)/2) + SPP[3]*(P[1][13] + P[0][13]*SF[8] + P[2][13]*SF[7] + P[3][13]*SF[11] - P[12][13]*SF[15] + P[11][13]*SPP[10] - (P[10][13]*q0)/2) + SPP[6]*(P[1][14] + P[0][14]*SF[8] + P[2][14]*SF[7] + P[3][14]*SF[11] - P[12][14]*SF[15] + P[11][14]*SPP[10] - (P[10][14]*q0)/2) - SPP[9]*(P[1][15] + P[0][15]*SF[8] + P[2][15]*SF[7] + P[3][15]*SF[11] - P[12][15]*SF[15] + P[11][15]*SPP[10] - (P[10][15]*q0)/2);
|
|
nextP[2][4] = P[2][4] + P[0][4]*SF[6] + P[1][4]*SF[10] + P[3][4]*SF[8] + P[12][4]*SF[14] - P[10][4]*SPP[10] - (P[11][4]*q0)/2 + SF[5]*(P[2][0] + P[0][0]*SF[6] + P[1][0]*SF[10] + P[3][0]*SF[8] + P[12][0]*SF[14] - P[10][0]*SPP[10] - (P[11][0]*q0)/2) + SF[3]*(P[2][1] + P[0][1]*SF[6] + P[1][1]*SF[10] + P[3][1]*SF[8] + P[12][1]*SF[14] - P[10][1]*SPP[10] - (P[11][1]*q0)/2) - SF[4]*(P[2][3] + P[0][3]*SF[6] + P[1][3]*SF[10] + P[3][3]*SF[8] + P[12][3]*SF[14] - P[10][3]*SPP[10] - (P[11][3]*q0)/2) + SPP[0]*(P[2][2] + P[0][2]*SF[6] + P[1][2]*SF[10] + P[3][2]*SF[8] + P[12][2]*SF[14] - P[10][2]*SPP[10] - (P[11][2]*q0)/2) + SPP[3]*(P[2][13] + P[0][13]*SF[6] + P[1][13]*SF[10] + P[3][13]*SF[8] + P[12][13]*SF[14] - P[10][13]*SPP[10] - (P[11][13]*q0)/2) + SPP[6]*(P[2][14] + P[0][14]*SF[6] + P[1][14]*SF[10] + P[3][14]*SF[8] + P[12][14]*SF[14] - P[10][14]*SPP[10] - (P[11][14]*q0)/2) - SPP[9]*(P[2][15] + P[0][15]*SF[6] + P[1][15]*SF[10] + P[3][15]*SF[8] + P[12][15]*SF[14] - P[10][15]*SPP[10] - (P[11][15]*q0)/2);
|
|
nextP[3][4] = P[3][4] + P[0][4]*SF[7] + P[1][4]*SF[6] + P[2][4]*SF[9] + P[10][4]*SF[15] - P[11][4]*SF[14] - (P[12][4]*q0)/2 + SF[5]*(P[3][0] + P[0][0]*SF[7] + P[1][0]*SF[6] + P[2][0]*SF[9] + P[10][0]*SF[15] - P[11][0]*SF[14] - (P[12][0]*q0)/2) + SF[3]*(P[3][1] + P[0][1]*SF[7] + P[1][1]*SF[6] + P[2][1]*SF[9] + P[10][1]*SF[15] - P[11][1]*SF[14] - (P[12][1]*q0)/2) - SF[4]*(P[3][3] + P[0][3]*SF[7] + P[1][3]*SF[6] + P[2][3]*SF[9] + P[10][3]*SF[15] - P[11][3]*SF[14] - (P[12][3]*q0)/2) + SPP[0]*(P[3][2] + P[0][2]*SF[7] + P[1][2]*SF[6] + P[2][2]*SF[9] + P[10][2]*SF[15] - P[11][2]*SF[14] - (P[12][2]*q0)/2) + SPP[3]*(P[3][13] + P[0][13]*SF[7] + P[1][13]*SF[6] + P[2][13]*SF[9] + P[10][13]*SF[15] - P[11][13]*SF[14] - (P[12][13]*q0)/2) + SPP[6]*(P[3][14] + P[0][14]*SF[7] + P[1][14]*SF[6] + P[2][14]*SF[9] + P[10][14]*SF[15] - P[11][14]*SF[14] - (P[12][14]*q0)/2) - SPP[9]*(P[3][15] + P[0][15]*SF[7] + P[1][15]*SF[6] + P[2][15]*SF[9] + P[10][15]*SF[15] - P[11][15]*SF[14] - (P[12][15]*q0)/2);
|
|
nextP[4][4] = P[4][4] + P[0][4]*SF[5] + P[1][4]*SF[3] - P[3][4]*SF[4] + P[2][4]*SPP[0] + P[13][4]*SPP[3] + P[14][4]*SPP[6] - P[15][4]*SPP[9] + dvyVar*sq(SG[7] - 2*q0*q3) + dvzVar*sq(SG[6] + 2*q0*q2) + SF[5]*(P[4][0] + P[0][0]*SF[5] + P[1][0]*SF[3] - P[3][0]*SF[4] + P[2][0]*SPP[0] + P[13][0]*SPP[3] + P[14][0]*SPP[6] - P[15][0]*SPP[9]) + SF[3]*(P[4][1] + P[0][1]*SF[5] + P[1][1]*SF[3] - P[3][1]*SF[4] + P[2][1]*SPP[0] + P[13][1]*SPP[3] + P[14][1]*SPP[6] - P[15][1]*SPP[9]) - SF[4]*(P[4][3] + P[0][3]*SF[5] + P[1][3]*SF[3] - P[3][3]*SF[4] + P[2][3]*SPP[0] + P[13][3]*SPP[3] + P[14][3]*SPP[6] - P[15][3]*SPP[9]) + SPP[0]*(P[4][2] + P[0][2]*SF[5] + P[1][2]*SF[3] - P[3][2]*SF[4] + P[2][2]*SPP[0] + P[13][2]*SPP[3] + P[14][2]*SPP[6] - P[15][2]*SPP[9]) + SPP[3]*(P[4][13] + P[0][13]*SF[5] + P[1][13]*SF[3] - P[3][13]*SF[4] + P[2][13]*SPP[0] + P[13][13]*SPP[3] + P[14][13]*SPP[6] - P[15][13]*SPP[9]) + SPP[6]*(P[4][14] + P[0][14]*SF[5] + P[1][14]*SF[3] - P[3][14]*SF[4] + P[2][14]*SPP[0] + P[13][14]*SPP[3] + P[14][14]*SPP[6] - P[15][14]*SPP[9]) - SPP[9]*(P[4][15] + P[0][15]*SF[5] + P[1][15]*SF[3] - P[3][15]*SF[4] + P[2][15]*SPP[0] + P[13][15]*SPP[3] + P[14][15]*SPP[6] - P[15][15]*SPP[9]) + dvxVar*sq(SG[1] + SG[2] - SG[3] - SG[4]);
|
|
nextP[0][5] = P[0][5] + P[1][5]*SF[9] + P[2][5]*SF[11] + P[3][5]*SF[10] + P[10][5]*SF[14] + P[11][5]*SF[15] + P[12][5]*SPP[10] + SF[4]*(P[0][0] + P[1][0]*SF[9] + P[2][0]*SF[11] + P[3][0]*SF[10] + P[10][0]*SF[14] + P[11][0]*SF[15] + P[12][0]*SPP[10]) + SF[3]*(P[0][2] + P[1][2]*SF[9] + P[2][2]*SF[11] + P[3][2]*SF[10] + P[10][2]*SF[14] + P[11][2]*SF[15] + P[12][2]*SPP[10]) + SF[5]*(P[0][3] + P[1][3]*SF[9] + P[2][3]*SF[11] + P[3][3]*SF[10] + P[10][3]*SF[14] + P[11][3]*SF[15] + P[12][3]*SPP[10]) - SPP[0]*(P[0][1] + P[1][1]*SF[9] + P[2][1]*SF[11] + P[3][1]*SF[10] + P[10][1]*SF[14] + P[11][1]*SF[15] + P[12][1]*SPP[10]) - SPP[8]*(P[0][13] + P[1][13]*SF[9] + P[2][13]*SF[11] + P[3][13]*SF[10] + P[10][13]*SF[14] + P[11][13]*SF[15] + P[12][13]*SPP[10]) + SPP[2]*(P[0][14] + P[1][14]*SF[9] + P[2][14]*SF[11] + P[3][14]*SF[10] + P[10][14]*SF[14] + P[11][14]*SF[15] + P[12][14]*SPP[10]) + SPP[5]*(P[0][15] + P[1][15]*SF[9] + P[2][15]*SF[11] + P[3][15]*SF[10] + P[10][15]*SF[14] + P[11][15]*SF[15] + P[12][15]*SPP[10]);
|
|
nextP[1][5] = P[1][5] + P[0][5]*SF[8] + P[2][5]*SF[7] + P[3][5]*SF[11] - P[12][5]*SF[15] + P[11][5]*SPP[10] - (P[10][5]*q0)/2 + SF[4]*(P[1][0] + P[0][0]*SF[8] + P[2][0]*SF[7] + P[3][0]*SF[11] - P[12][0]*SF[15] + P[11][0]*SPP[10] - (P[10][0]*q0)/2) + SF[3]*(P[1][2] + P[0][2]*SF[8] + P[2][2]*SF[7] + P[3][2]*SF[11] - P[12][2]*SF[15] + P[11][2]*SPP[10] - (P[10][2]*q0)/2) + SF[5]*(P[1][3] + P[0][3]*SF[8] + P[2][3]*SF[7] + P[3][3]*SF[11] - P[12][3]*SF[15] + P[11][3]*SPP[10] - (P[10][3]*q0)/2) - SPP[0]*(P[1][1] + P[0][1]*SF[8] + P[2][1]*SF[7] + P[3][1]*SF[11] - P[12][1]*SF[15] + P[11][1]*SPP[10] - (P[10][1]*q0)/2) - SPP[8]*(P[1][13] + P[0][13]*SF[8] + P[2][13]*SF[7] + P[3][13]*SF[11] - P[12][13]*SF[15] + P[11][13]*SPP[10] - (P[10][13]*q0)/2) + SPP[2]*(P[1][14] + P[0][14]*SF[8] + P[2][14]*SF[7] + P[3][14]*SF[11] - P[12][14]*SF[15] + P[11][14]*SPP[10] - (P[10][14]*q0)/2) + SPP[5]*(P[1][15] + P[0][15]*SF[8] + P[2][15]*SF[7] + P[3][15]*SF[11] - P[12][15]*SF[15] + P[11][15]*SPP[10] - (P[10][15]*q0)/2);
|
|
nextP[2][5] = P[2][5] + P[0][5]*SF[6] + P[1][5]*SF[10] + P[3][5]*SF[8] + P[12][5]*SF[14] - P[10][5]*SPP[10] - (P[11][5]*q0)/2 + SF[4]*(P[2][0] + P[0][0]*SF[6] + P[1][0]*SF[10] + P[3][0]*SF[8] + P[12][0]*SF[14] - P[10][0]*SPP[10] - (P[11][0]*q0)/2) + SF[3]*(P[2][2] + P[0][2]*SF[6] + P[1][2]*SF[10] + P[3][2]*SF[8] + P[12][2]*SF[14] - P[10][2]*SPP[10] - (P[11][2]*q0)/2) + SF[5]*(P[2][3] + P[0][3]*SF[6] + P[1][3]*SF[10] + P[3][3]*SF[8] + P[12][3]*SF[14] - P[10][3]*SPP[10] - (P[11][3]*q0)/2) - SPP[0]*(P[2][1] + P[0][1]*SF[6] + P[1][1]*SF[10] + P[3][1]*SF[8] + P[12][1]*SF[14] - P[10][1]*SPP[10] - (P[11][1]*q0)/2) - SPP[8]*(P[2][13] + P[0][13]*SF[6] + P[1][13]*SF[10] + P[3][13]*SF[8] + P[12][13]*SF[14] - P[10][13]*SPP[10] - (P[11][13]*q0)/2) + SPP[2]*(P[2][14] + P[0][14]*SF[6] + P[1][14]*SF[10] + P[3][14]*SF[8] + P[12][14]*SF[14] - P[10][14]*SPP[10] - (P[11][14]*q0)/2) + SPP[5]*(P[2][15] + P[0][15]*SF[6] + P[1][15]*SF[10] + P[3][15]*SF[8] + P[12][15]*SF[14] - P[10][15]*SPP[10] - (P[11][15]*q0)/2);
|
|
nextP[3][5] = P[3][5] + P[0][5]*SF[7] + P[1][5]*SF[6] + P[2][5]*SF[9] + P[10][5]*SF[15] - P[11][5]*SF[14] - (P[12][5]*q0)/2 + SF[4]*(P[3][0] + P[0][0]*SF[7] + P[1][0]*SF[6] + P[2][0]*SF[9] + P[10][0]*SF[15] - P[11][0]*SF[14] - (P[12][0]*q0)/2) + SF[3]*(P[3][2] + P[0][2]*SF[7] + P[1][2]*SF[6] + P[2][2]*SF[9] + P[10][2]*SF[15] - P[11][2]*SF[14] - (P[12][2]*q0)/2) + SF[5]*(P[3][3] + P[0][3]*SF[7] + P[1][3]*SF[6] + P[2][3]*SF[9] + P[10][3]*SF[15] - P[11][3]*SF[14] - (P[12][3]*q0)/2) - SPP[0]*(P[3][1] + P[0][1]*SF[7] + P[1][1]*SF[6] + P[2][1]*SF[9] + P[10][1]*SF[15] - P[11][1]*SF[14] - (P[12][1]*q0)/2) - SPP[8]*(P[3][13] + P[0][13]*SF[7] + P[1][13]*SF[6] + P[2][13]*SF[9] + P[10][13]*SF[15] - P[11][13]*SF[14] - (P[12][13]*q0)/2) + SPP[2]*(P[3][14] + P[0][14]*SF[7] + P[1][14]*SF[6] + P[2][14]*SF[9] + P[10][14]*SF[15] - P[11][14]*SF[14] - (P[12][14]*q0)/2) + SPP[5]*(P[3][15] + P[0][15]*SF[7] + P[1][15]*SF[6] + P[2][15]*SF[9] + P[10][15]*SF[15] - P[11][15]*SF[14] - (P[12][15]*q0)/2);
|
|
nextP[4][5] = P[4][5] + SQ[2] + P[0][5]*SF[5] + P[1][5]*SF[3] - P[3][5]*SF[4] + P[2][5]*SPP[0] + P[13][5]*SPP[3] + P[14][5]*SPP[6] - P[15][5]*SPP[9] + SF[4]*(P[4][0] + P[0][0]*SF[5] + P[1][0]*SF[3] - P[3][0]*SF[4] + P[2][0]*SPP[0] + P[13][0]*SPP[3] + P[14][0]*SPP[6] - P[15][0]*SPP[9]) + SF[3]*(P[4][2] + P[0][2]*SF[5] + P[1][2]*SF[3] - P[3][2]*SF[4] + P[2][2]*SPP[0] + P[13][2]*SPP[3] + P[14][2]*SPP[6] - P[15][2]*SPP[9]) + SF[5]*(P[4][3] + P[0][3]*SF[5] + P[1][3]*SF[3] - P[3][3]*SF[4] + P[2][3]*SPP[0] + P[13][3]*SPP[3] + P[14][3]*SPP[6] - P[15][3]*SPP[9]) - SPP[0]*(P[4][1] + P[0][1]*SF[5] + P[1][1]*SF[3] - P[3][1]*SF[4] + P[2][1]*SPP[0] + P[13][1]*SPP[3] + P[14][1]*SPP[6] - P[15][1]*SPP[9]) - SPP[8]*(P[4][13] + P[0][13]*SF[5] + P[1][13]*SF[3] - P[3][13]*SF[4] + P[2][13]*SPP[0] + P[13][13]*SPP[3] + P[14][13]*SPP[6] - P[15][13]*SPP[9]) + SPP[2]*(P[4][14] + P[0][14]*SF[5] + P[1][14]*SF[3] - P[3][14]*SF[4] + P[2][14]*SPP[0] + P[13][14]*SPP[3] + P[14][14]*SPP[6] - P[15][14]*SPP[9]) + SPP[5]*(P[4][15] + P[0][15]*SF[5] + P[1][15]*SF[3] - P[3][15]*SF[4] + P[2][15]*SPP[0] + P[13][15]*SPP[3] + P[14][15]*SPP[6] - P[15][15]*SPP[9]);
|
|
nextP[5][5] = P[5][5] + P[0][5]*SF[4] + P[2][5]*SF[3] + P[3][5]*SF[5] - P[1][5]*SPP[0] - P[13][5]*SPP[8] + P[14][5]*SPP[2] + P[15][5]*SPP[5] + dvxVar*sq(SG[7] + 2*q0*q3) + dvzVar*sq(SG[5] - 2*q0*q1) + SF[4]*(P[5][0] + P[0][0]*SF[4] + P[2][0]*SF[3] + P[3][0]*SF[5] - P[1][0]*SPP[0] - P[13][0]*SPP[8] + P[14][0]*SPP[2] + P[15][0]*SPP[5]) + SF[3]*(P[5][2] + P[0][2]*SF[4] + P[2][2]*SF[3] + P[3][2]*SF[5] - P[1][2]*SPP[0] - P[13][2]*SPP[8] + P[14][2]*SPP[2] + P[15][2]*SPP[5]) + SF[5]*(P[5][3] + P[0][3]*SF[4] + P[2][3]*SF[3] + P[3][3]*SF[5] - P[1][3]*SPP[0] - P[13][3]*SPP[8] + P[14][3]*SPP[2] + P[15][3]*SPP[5]) - SPP[0]*(P[5][1] + P[0][1]*SF[4] + P[2][1]*SF[3] + P[3][1]*SF[5] - P[1][1]*SPP[0] - P[13][1]*SPP[8] + P[14][1]*SPP[2] + P[15][1]*SPP[5]) - SPP[8]*(P[5][13] + P[0][13]*SF[4] + P[2][13]*SF[3] + P[3][13]*SF[5] - P[1][13]*SPP[0] - P[13][13]*SPP[8] + P[14][13]*SPP[2] + P[15][13]*SPP[5]) + SPP[2]*(P[5][14] + P[0][14]*SF[4] + P[2][14]*SF[3] + P[3][14]*SF[5] - P[1][14]*SPP[0] - P[13][14]*SPP[8] + P[14][14]*SPP[2] + P[15][14]*SPP[5]) + SPP[5]*(P[5][15] + P[0][15]*SF[4] + P[2][15]*SF[3] + P[3][15]*SF[5] - P[1][15]*SPP[0] - P[13][15]*SPP[8] + P[14][15]*SPP[2] + P[15][15]*SPP[5]) + dvyVar*sq(SG[1] - SG[2] + SG[3] - SG[4]);
|
|
nextP[0][6] = P[0][6] + P[1][6]*SF[9] + P[2][6]*SF[11] + P[3][6]*SF[10] + P[10][6]*SF[14] + P[11][6]*SF[15] + P[12][6]*SPP[10] + SF[4]*(P[0][1] + P[1][1]*SF[9] + P[2][1]*SF[11] + P[3][1]*SF[10] + P[10][1]*SF[14] + P[11][1]*SF[15] + P[12][1]*SPP[10]) - SF[5]*(P[0][2] + P[1][2]*SF[9] + P[2][2]*SF[11] + P[3][2]*SF[10] + P[10][2]*SF[14] + P[11][2]*SF[15] + P[12][2]*SPP[10]) + SF[3]*(P[0][3] + P[1][3]*SF[9] + P[2][3]*SF[11] + P[3][3]*SF[10] + P[10][3]*SF[14] + P[11][3]*SF[15] + P[12][3]*SPP[10]) + SPP[0]*(P[0][0] + P[1][0]*SF[9] + P[2][0]*SF[11] + P[3][0]*SF[10] + P[10][0]*SF[14] + P[11][0]*SF[15] + P[12][0]*SPP[10]) + SPP[4]*(P[0][13] + P[1][13]*SF[9] + P[2][13]*SF[11] + P[3][13]*SF[10] + P[10][13]*SF[14] + P[11][13]*SF[15] + P[12][13]*SPP[10]) - SPP[7]*(P[0][14] + P[1][14]*SF[9] + P[2][14]*SF[11] + P[3][14]*SF[10] + P[10][14]*SF[14] + P[11][14]*SF[15] + P[12][14]*SPP[10]) - SPP[1]*(P[0][15] + P[1][15]*SF[9] + P[2][15]*SF[11] + P[3][15]*SF[10] + P[10][15]*SF[14] + P[11][15]*SF[15] + P[12][15]*SPP[10]);
|
|
nextP[1][6] = P[1][6] + P[0][6]*SF[8] + P[2][6]*SF[7] + P[3][6]*SF[11] - P[12][6]*SF[15] + P[11][6]*SPP[10] - (P[10][6]*q0)/2 + SF[4]*(P[1][1] + P[0][1]*SF[8] + P[2][1]*SF[7] + P[3][1]*SF[11] - P[12][1]*SF[15] + P[11][1]*SPP[10] - (P[10][1]*q0)/2) - SF[5]*(P[1][2] + P[0][2]*SF[8] + P[2][2]*SF[7] + P[3][2]*SF[11] - P[12][2]*SF[15] + P[11][2]*SPP[10] - (P[10][2]*q0)/2) + SF[3]*(P[1][3] + P[0][3]*SF[8] + P[2][3]*SF[7] + P[3][3]*SF[11] - P[12][3]*SF[15] + P[11][3]*SPP[10] - (P[10][3]*q0)/2) + SPP[0]*(P[1][0] + P[0][0]*SF[8] + P[2][0]*SF[7] + P[3][0]*SF[11] - P[12][0]*SF[15] + P[11][0]*SPP[10] - (P[10][0]*q0)/2) + SPP[4]*(P[1][13] + P[0][13]*SF[8] + P[2][13]*SF[7] + P[3][13]*SF[11] - P[12][13]*SF[15] + P[11][13]*SPP[10] - (P[10][13]*q0)/2) - SPP[7]*(P[1][14] + P[0][14]*SF[8] + P[2][14]*SF[7] + P[3][14]*SF[11] - P[12][14]*SF[15] + P[11][14]*SPP[10] - (P[10][14]*q0)/2) - SPP[1]*(P[1][15] + P[0][15]*SF[8] + P[2][15]*SF[7] + P[3][15]*SF[11] - P[12][15]*SF[15] + P[11][15]*SPP[10] - (P[10][15]*q0)/2);
|
|
nextP[2][6] = P[2][6] + P[0][6]*SF[6] + P[1][6]*SF[10] + P[3][6]*SF[8] + P[12][6]*SF[14] - P[10][6]*SPP[10] - (P[11][6]*q0)/2 + SF[4]*(P[2][1] + P[0][1]*SF[6] + P[1][1]*SF[10] + P[3][1]*SF[8] + P[12][1]*SF[14] - P[10][1]*SPP[10] - (P[11][1]*q0)/2) - SF[5]*(P[2][2] + P[0][2]*SF[6] + P[1][2]*SF[10] + P[3][2]*SF[8] + P[12][2]*SF[14] - P[10][2]*SPP[10] - (P[11][2]*q0)/2) + SF[3]*(P[2][3] + P[0][3]*SF[6] + P[1][3]*SF[10] + P[3][3]*SF[8] + P[12][3]*SF[14] - P[10][3]*SPP[10] - (P[11][3]*q0)/2) + SPP[0]*(P[2][0] + P[0][0]*SF[6] + P[1][0]*SF[10] + P[3][0]*SF[8] + P[12][0]*SF[14] - P[10][0]*SPP[10] - (P[11][0]*q0)/2) + SPP[4]*(P[2][13] + P[0][13]*SF[6] + P[1][13]*SF[10] + P[3][13]*SF[8] + P[12][13]*SF[14] - P[10][13]*SPP[10] - (P[11][13]*q0)/2) - SPP[7]*(P[2][14] + P[0][14]*SF[6] + P[1][14]*SF[10] + P[3][14]*SF[8] + P[12][14]*SF[14] - P[10][14]*SPP[10] - (P[11][14]*q0)/2) - SPP[1]*(P[2][15] + P[0][15]*SF[6] + P[1][15]*SF[10] + P[3][15]*SF[8] + P[12][15]*SF[14] - P[10][15]*SPP[10] - (P[11][15]*q0)/2);
|
|
nextP[3][6] = P[3][6] + P[0][6]*SF[7] + P[1][6]*SF[6] + P[2][6]*SF[9] + P[10][6]*SF[15] - P[11][6]*SF[14] - (P[12][6]*q0)/2 + SF[4]*(P[3][1] + P[0][1]*SF[7] + P[1][1]*SF[6] + P[2][1]*SF[9] + P[10][1]*SF[15] - P[11][1]*SF[14] - (P[12][1]*q0)/2) - SF[5]*(P[3][2] + P[0][2]*SF[7] + P[1][2]*SF[6] + P[2][2]*SF[9] + P[10][2]*SF[15] - P[11][2]*SF[14] - (P[12][2]*q0)/2) + SF[3]*(P[3][3] + P[0][3]*SF[7] + P[1][3]*SF[6] + P[2][3]*SF[9] + P[10][3]*SF[15] - P[11][3]*SF[14] - (P[12][3]*q0)/2) + SPP[0]*(P[3][0] + P[0][0]*SF[7] + P[1][0]*SF[6] + P[2][0]*SF[9] + P[10][0]*SF[15] - P[11][0]*SF[14] - (P[12][0]*q0)/2) + SPP[4]*(P[3][13] + P[0][13]*SF[7] + P[1][13]*SF[6] + P[2][13]*SF[9] + P[10][13]*SF[15] - P[11][13]*SF[14] - (P[12][13]*q0)/2) - SPP[7]*(P[3][14] + P[0][14]*SF[7] + P[1][14]*SF[6] + P[2][14]*SF[9] + P[10][14]*SF[15] - P[11][14]*SF[14] - (P[12][14]*q0)/2) - SPP[1]*(P[3][15] + P[0][15]*SF[7] + P[1][15]*SF[6] + P[2][15]*SF[9] + P[10][15]*SF[15] - P[11][15]*SF[14] - (P[12][15]*q0)/2);
|
|
nextP[4][6] = P[4][6] + SQ[1] + P[0][6]*SF[5] + P[1][6]*SF[3] - P[3][6]*SF[4] + P[2][6]*SPP[0] + P[13][6]*SPP[3] + P[14][6]*SPP[6] - P[15][6]*SPP[9] + SF[4]*(P[4][1] + P[0][1]*SF[5] + P[1][1]*SF[3] - P[3][1]*SF[4] + P[2][1]*SPP[0] + P[13][1]*SPP[3] + P[14][1]*SPP[6] - P[15][1]*SPP[9]) - SF[5]*(P[4][2] + P[0][2]*SF[5] + P[1][2]*SF[3] - P[3][2]*SF[4] + P[2][2]*SPP[0] + P[13][2]*SPP[3] + P[14][2]*SPP[6] - P[15][2]*SPP[9]) + SF[3]*(P[4][3] + P[0][3]*SF[5] + P[1][3]*SF[3] - P[3][3]*SF[4] + P[2][3]*SPP[0] + P[13][3]*SPP[3] + P[14][3]*SPP[6] - P[15][3]*SPP[9]) + SPP[0]*(P[4][0] + P[0][0]*SF[5] + P[1][0]*SF[3] - P[3][0]*SF[4] + P[2][0]*SPP[0] + P[13][0]*SPP[3] + P[14][0]*SPP[6] - P[15][0]*SPP[9]) + SPP[4]*(P[4][13] + P[0][13]*SF[5] + P[1][13]*SF[3] - P[3][13]*SF[4] + P[2][13]*SPP[0] + P[13][13]*SPP[3] + P[14][13]*SPP[6] - P[15][13]*SPP[9]) - SPP[7]*(P[4][14] + P[0][14]*SF[5] + P[1][14]*SF[3] - P[3][14]*SF[4] + P[2][14]*SPP[0] + P[13][14]*SPP[3] + P[14][14]*SPP[6] - P[15][14]*SPP[9]) - SPP[1]*(P[4][15] + P[0][15]*SF[5] + P[1][15]*SF[3] - P[3][15]*SF[4] + P[2][15]*SPP[0] + P[13][15]*SPP[3] + P[14][15]*SPP[6] - P[15][15]*SPP[9]);
|
|
nextP[5][6] = P[5][6] + SQ[0] + P[0][6]*SF[4] + P[2][6]*SF[3] + P[3][6]*SF[5] - P[1][6]*SPP[0] - P[13][6]*SPP[8] + P[14][6]*SPP[2] + P[15][6]*SPP[5] + SF[4]*(P[5][1] + P[0][1]*SF[4] + P[2][1]*SF[3] + P[3][1]*SF[5] - P[1][1]*SPP[0] - P[13][1]*SPP[8] + P[14][1]*SPP[2] + P[15][1]*SPP[5]) - SF[5]*(P[5][2] + P[0][2]*SF[4] + P[2][2]*SF[3] + P[3][2]*SF[5] - P[1][2]*SPP[0] - P[13][2]*SPP[8] + P[14][2]*SPP[2] + P[15][2]*SPP[5]) + SF[3]*(P[5][3] + P[0][3]*SF[4] + P[2][3]*SF[3] + P[3][3]*SF[5] - P[1][3]*SPP[0] - P[13][3]*SPP[8] + P[14][3]*SPP[2] + P[15][3]*SPP[5]) + SPP[0]*(P[5][0] + P[0][0]*SF[4] + P[2][0]*SF[3] + P[3][0]*SF[5] - P[1][0]*SPP[0] - P[13][0]*SPP[8] + P[14][0]*SPP[2] + P[15][0]*SPP[5]) + SPP[4]*(P[5][13] + P[0][13]*SF[4] + P[2][13]*SF[3] + P[3][13]*SF[5] - P[1][13]*SPP[0] - P[13][13]*SPP[8] + P[14][13]*SPP[2] + P[15][13]*SPP[5]) - SPP[7]*(P[5][14] + P[0][14]*SF[4] + P[2][14]*SF[3] + P[3][14]*SF[5] - P[1][14]*SPP[0] - P[13][14]*SPP[8] + P[14][14]*SPP[2] + P[15][14]*SPP[5]) - SPP[1]*(P[5][15] + P[0][15]*SF[4] + P[2][15]*SF[3] + P[3][15]*SF[5] - P[1][15]*SPP[0] - P[13][15]*SPP[8] + P[14][15]*SPP[2] + P[15][15]*SPP[5]);
|
|
nextP[6][6] = P[6][6] + P[1][6]*SF[4] - P[2][6]*SF[5] + P[3][6]*SF[3] + P[0][6]*SPP[0] + P[13][6]*SPP[4] - P[14][6]*SPP[7] - P[15][6]*SPP[1] + dvxVar*sq(SG[6] - 2*q0*q2) + dvyVar*sq(SG[5] + 2*q0*q1) + SF[4]*(P[6][1] + P[1][1]*SF[4] - P[2][1]*SF[5] + P[3][1]*SF[3] + P[0][1]*SPP[0] + P[13][1]*SPP[4] - P[14][1]*SPP[7] - P[15][1]*SPP[1]) - SF[5]*(P[6][2] + P[1][2]*SF[4] - P[2][2]*SF[5] + P[3][2]*SF[3] + P[0][2]*SPP[0] + P[13][2]*SPP[4] - P[14][2]*SPP[7] - P[15][2]*SPP[1]) + SF[3]*(P[6][3] + P[1][3]*SF[4] - P[2][3]*SF[5] + P[3][3]*SF[3] + P[0][3]*SPP[0] + P[13][3]*SPP[4] - P[14][3]*SPP[7] - P[15][3]*SPP[1]) + SPP[0]*(P[6][0] + P[1][0]*SF[4] - P[2][0]*SF[5] + P[3][0]*SF[3] + P[0][0]*SPP[0] + P[13][0]*SPP[4] - P[14][0]*SPP[7] - P[15][0]*SPP[1]) + SPP[4]*(P[6][13] + P[1][13]*SF[4] - P[2][13]*SF[5] + P[3][13]*SF[3] + P[0][13]*SPP[0] + P[13][13]*SPP[4] - P[14][13]*SPP[7] - P[15][13]*SPP[1]) - SPP[7]*(P[6][14] + P[1][14]*SF[4] - P[2][14]*SF[5] + P[3][14]*SF[3] + P[0][14]*SPP[0] + P[13][14]*SPP[4] - P[14][14]*SPP[7] - P[15][14]*SPP[1]) - SPP[1]*(P[6][15] + P[1][15]*SF[4] - P[2][15]*SF[5] + P[3][15]*SF[3] + P[0][15]*SPP[0] + P[13][15]*SPP[4] - P[14][15]*SPP[7] - P[15][15]*SPP[1]) + dvzVar*sq(SG[1] - SG[2] - SG[3] + SG[4]);
|
|
nextP[0][7] = P[0][7] + P[1][7]*SF[9] + P[2][7]*SF[11] + P[3][7]*SF[10] + P[10][7]*SF[14] + P[11][7]*SF[15] + P[12][7]*SPP[10] + dt*(P[0][4] + P[1][4]*SF[9] + P[2][4]*SF[11] + P[3][4]*SF[10] + P[10][4]*SF[14] + P[11][4]*SF[15] + P[12][4]*SPP[10]);
|
|
nextP[1][7] = P[1][7] + P[0][7]*SF[8] + P[2][7]*SF[7] + P[3][7]*SF[11] - P[12][7]*SF[15] + P[11][7]*SPP[10] - (P[10][7]*q0)/2 + dt*(P[1][4] + P[0][4]*SF[8] + P[2][4]*SF[7] + P[3][4]*SF[11] - P[12][4]*SF[15] + P[11][4]*SPP[10] - (P[10][4]*q0)/2);
|
|
nextP[2][7] = P[2][7] + P[0][7]*SF[6] + P[1][7]*SF[10] + P[3][7]*SF[8] + P[12][7]*SF[14] - P[10][7]*SPP[10] - (P[11][7]*q0)/2 + dt*(P[2][4] + P[0][4]*SF[6] + P[1][4]*SF[10] + P[3][4]*SF[8] + P[12][4]*SF[14] - P[10][4]*SPP[10] - (P[11][4]*q0)/2);
|
|
nextP[3][7] = P[3][7] + P[0][7]*SF[7] + P[1][7]*SF[6] + P[2][7]*SF[9] + P[10][7]*SF[15] - P[11][7]*SF[14] - (P[12][7]*q0)/2 + dt*(P[3][4] + P[0][4]*SF[7] + P[1][4]*SF[6] + P[2][4]*SF[9] + P[10][4]*SF[15] - P[11][4]*SF[14] - (P[12][4]*q0)/2);
|
|
nextP[4][7] = P[4][7] + P[0][7]*SF[5] + P[1][7]*SF[3] - P[3][7]*SF[4] + P[2][7]*SPP[0] + P[13][7]*SPP[3] + P[14][7]*SPP[6] - P[15][7]*SPP[9] + dt*(P[4][4] + P[0][4]*SF[5] + P[1][4]*SF[3] - P[3][4]*SF[4] + P[2][4]*SPP[0] + P[13][4]*SPP[3] + P[14][4]*SPP[6] - P[15][4]*SPP[9]);
|
|
nextP[5][7] = P[5][7] + P[0][7]*SF[4] + P[2][7]*SF[3] + P[3][7]*SF[5] - P[1][7]*SPP[0] - P[13][7]*SPP[8] + P[14][7]*SPP[2] + P[15][7]*SPP[5] + dt*(P[5][4] + P[0][4]*SF[4] + P[2][4]*SF[3] + P[3][4]*SF[5] - P[1][4]*SPP[0] - P[13][4]*SPP[8] + P[14][4]*SPP[2] + P[15][4]*SPP[5]);
|
|
nextP[6][7] = P[6][7] + P[1][7]*SF[4] - P[2][7]*SF[5] + P[3][7]*SF[3] + P[0][7]*SPP[0] + P[13][7]*SPP[4] - P[14][7]*SPP[7] - P[15][7]*SPP[1] + dt*(P[6][4] + P[1][4]*SF[4] - P[2][4]*SF[5] + P[3][4]*SF[3] + P[0][4]*SPP[0] + P[13][4]*SPP[4] - P[14][4]*SPP[7] - P[15][4]*SPP[1]);
|
|
nextP[7][7] = P[7][7] + P[4][7]*dt + dt*(P[7][4] + P[4][4]*dt);
|
|
nextP[0][8] = P[0][8] + P[1][8]*SF[9] + P[2][8]*SF[11] + P[3][8]*SF[10] + P[10][8]*SF[14] + P[11][8]*SF[15] + P[12][8]*SPP[10] + dt*(P[0][5] + P[1][5]*SF[9] + P[2][5]*SF[11] + P[3][5]*SF[10] + P[10][5]*SF[14] + P[11][5]*SF[15] + P[12][5]*SPP[10]);
|
|
nextP[1][8] = P[1][8] + P[0][8]*SF[8] + P[2][8]*SF[7] + P[3][8]*SF[11] - P[12][8]*SF[15] + P[11][8]*SPP[10] - (P[10][8]*q0)/2 + dt*(P[1][5] + P[0][5]*SF[8] + P[2][5]*SF[7] + P[3][5]*SF[11] - P[12][5]*SF[15] + P[11][5]*SPP[10] - (P[10][5]*q0)/2);
|
|
nextP[2][8] = P[2][8] + P[0][8]*SF[6] + P[1][8]*SF[10] + P[3][8]*SF[8] + P[12][8]*SF[14] - P[10][8]*SPP[10] - (P[11][8]*q0)/2 + dt*(P[2][5] + P[0][5]*SF[6] + P[1][5]*SF[10] + P[3][5]*SF[8] + P[12][5]*SF[14] - P[10][5]*SPP[10] - (P[11][5]*q0)/2);
|
|
nextP[3][8] = P[3][8] + P[0][8]*SF[7] + P[1][8]*SF[6] + P[2][8]*SF[9] + P[10][8]*SF[15] - P[11][8]*SF[14] - (P[12][8]*q0)/2 + dt*(P[3][5] + P[0][5]*SF[7] + P[1][5]*SF[6] + P[2][5]*SF[9] + P[10][5]*SF[15] - P[11][5]*SF[14] - (P[12][5]*q0)/2);
|
|
nextP[4][8] = P[4][8] + P[0][8]*SF[5] + P[1][8]*SF[3] - P[3][8]*SF[4] + P[2][8]*SPP[0] + P[13][8]*SPP[3] + P[14][8]*SPP[6] - P[15][8]*SPP[9] + dt*(P[4][5] + P[0][5]*SF[5] + P[1][5]*SF[3] - P[3][5]*SF[4] + P[2][5]*SPP[0] + P[13][5]*SPP[3] + P[14][5]*SPP[6] - P[15][5]*SPP[9]);
|
|
nextP[5][8] = P[5][8] + P[0][8]*SF[4] + P[2][8]*SF[3] + P[3][8]*SF[5] - P[1][8]*SPP[0] - P[13][8]*SPP[8] + P[14][8]*SPP[2] + P[15][8]*SPP[5] + dt*(P[5][5] + P[0][5]*SF[4] + P[2][5]*SF[3] + P[3][5]*SF[5] - P[1][5]*SPP[0] - P[13][5]*SPP[8] + P[14][5]*SPP[2] + P[15][5]*SPP[5]);
|
|
nextP[6][8] = P[6][8] + P[1][8]*SF[4] - P[2][8]*SF[5] + P[3][8]*SF[3] + P[0][8]*SPP[0] + P[13][8]*SPP[4] - P[14][8]*SPP[7] - P[15][8]*SPP[1] + dt*(P[6][5] + P[1][5]*SF[4] - P[2][5]*SF[5] + P[3][5]*SF[3] + P[0][5]*SPP[0] + P[13][5]*SPP[4] - P[14][5]*SPP[7] - P[15][5]*SPP[1]);
|
|
nextP[7][8] = P[7][8] + P[4][8]*dt + dt*(P[7][5] + P[4][5]*dt);
|
|
nextP[8][8] = P[8][8] + P[5][8]*dt + dt*(P[8][5] + P[5][5]*dt);
|
|
nextP[0][9] = P[0][9] + P[1][9]*SF[9] + P[2][9]*SF[11] + P[3][9]*SF[10] + P[10][9]*SF[14] + P[11][9]*SF[15] + P[12][9]*SPP[10] + dt*(P[0][6] + P[1][6]*SF[9] + P[2][6]*SF[11] + P[3][6]*SF[10] + P[10][6]*SF[14] + P[11][6]*SF[15] + P[12][6]*SPP[10]);
|
|
nextP[1][9] = P[1][9] + P[0][9]*SF[8] + P[2][9]*SF[7] + P[3][9]*SF[11] - P[12][9]*SF[15] + P[11][9]*SPP[10] - (P[10][9]*q0)/2 + dt*(P[1][6] + P[0][6]*SF[8] + P[2][6]*SF[7] + P[3][6]*SF[11] - P[12][6]*SF[15] + P[11][6]*SPP[10] - (P[10][6]*q0)/2);
|
|
nextP[2][9] = P[2][9] + P[0][9]*SF[6] + P[1][9]*SF[10] + P[3][9]*SF[8] + P[12][9]*SF[14] - P[10][9]*SPP[10] - (P[11][9]*q0)/2 + dt*(P[2][6] + P[0][6]*SF[6] + P[1][6]*SF[10] + P[3][6]*SF[8] + P[12][6]*SF[14] - P[10][6]*SPP[10] - (P[11][6]*q0)/2);
|
|
nextP[3][9] = P[3][9] + P[0][9]*SF[7] + P[1][9]*SF[6] + P[2][9]*SF[9] + P[10][9]*SF[15] - P[11][9]*SF[14] - (P[12][9]*q0)/2 + dt*(P[3][6] + P[0][6]*SF[7] + P[1][6]*SF[6] + P[2][6]*SF[9] + P[10][6]*SF[15] - P[11][6]*SF[14] - (P[12][6]*q0)/2);
|
|
nextP[4][9] = P[4][9] + P[0][9]*SF[5] + P[1][9]*SF[3] - P[3][9]*SF[4] + P[2][9]*SPP[0] + P[13][9]*SPP[3] + P[14][9]*SPP[6] - P[15][9]*SPP[9] + dt*(P[4][6] + P[0][6]*SF[5] + P[1][6]*SF[3] - P[3][6]*SF[4] + P[2][6]*SPP[0] + P[13][6]*SPP[3] + P[14][6]*SPP[6] - P[15][6]*SPP[9]);
|
|
nextP[5][9] = P[5][9] + P[0][9]*SF[4] + P[2][9]*SF[3] + P[3][9]*SF[5] - P[1][9]*SPP[0] - P[13][9]*SPP[8] + P[14][9]*SPP[2] + P[15][9]*SPP[5] + dt*(P[5][6] + P[0][6]*SF[4] + P[2][6]*SF[3] + P[3][6]*SF[5] - P[1][6]*SPP[0] - P[13][6]*SPP[8] + P[14][6]*SPP[2] + P[15][6]*SPP[5]);
|
|
nextP[6][9] = P[6][9] + P[1][9]*SF[4] - P[2][9]*SF[5] + P[3][9]*SF[3] + P[0][9]*SPP[0] + P[13][9]*SPP[4] - P[14][9]*SPP[7] - P[15][9]*SPP[1] + dt*(P[6][6] + P[1][6]*SF[4] - P[2][6]*SF[5] + P[3][6]*SF[3] + P[0][6]*SPP[0] + P[13][6]*SPP[4] - P[14][6]*SPP[7] - P[15][6]*SPP[1]);
|
|
nextP[7][9] = P[7][9] + P[4][9]*dt + dt*(P[7][6] + P[4][6]*dt);
|
|
nextP[8][9] = P[8][9] + P[5][9]*dt + dt*(P[8][6] + P[5][6]*dt);
|
|
nextP[9][9] = P[9][9] + P[6][9]*dt + dt*(P[9][6] + P[6][6]*dt);
|
|
|
|
if (stateIndexLim > 9) {
|
|
nextP[0][10] = P[0][10] + P[1][10]*SF[9] + P[2][10]*SF[11] + P[3][10]*SF[10] + P[10][10]*SF[14] + P[11][10]*SF[15] + P[12][10]*SPP[10];
|
|
nextP[1][10] = P[1][10] + P[0][10]*SF[8] + P[2][10]*SF[7] + P[3][10]*SF[11] - P[12][10]*SF[15] + P[11][10]*SPP[10] - (P[10][10]*q0)/2;
|
|
nextP[2][10] = P[2][10] + P[0][10]*SF[6] + P[1][10]*SF[10] + P[3][10]*SF[8] + P[12][10]*SF[14] - P[10][10]*SPP[10] - (P[11][10]*q0)/2;
|
|
nextP[3][10] = P[3][10] + P[0][10]*SF[7] + P[1][10]*SF[6] + P[2][10]*SF[9] + P[10][10]*SF[15] - P[11][10]*SF[14] - (P[12][10]*q0)/2;
|
|
nextP[4][10] = P[4][10] + P[0][10]*SF[5] + P[1][10]*SF[3] - P[3][10]*SF[4] + P[2][10]*SPP[0] + P[13][10]*SPP[3] + P[14][10]*SPP[6] - P[15][10]*SPP[9];
|
|
nextP[5][10] = P[5][10] + P[0][10]*SF[4] + P[2][10]*SF[3] + P[3][10]*SF[5] - P[1][10]*SPP[0] - P[13][10]*SPP[8] + P[14][10]*SPP[2] + P[15][10]*SPP[5];
|
|
nextP[6][10] = P[6][10] + P[1][10]*SF[4] - P[2][10]*SF[5] + P[3][10]*SF[3] + P[0][10]*SPP[0] + P[13][10]*SPP[4] - P[14][10]*SPP[7] - P[15][10]*SPP[1];
|
|
nextP[7][10] = P[7][10] + P[4][10]*dt;
|
|
nextP[8][10] = P[8][10] + P[5][10]*dt;
|
|
nextP[9][10] = P[9][10] + P[6][10]*dt;
|
|
nextP[10][10] = P[10][10];
|
|
nextP[0][11] = P[0][11] + P[1][11]*SF[9] + P[2][11]*SF[11] + P[3][11]*SF[10] + P[10][11]*SF[14] + P[11][11]*SF[15] + P[12][11]*SPP[10];
|
|
nextP[1][11] = P[1][11] + P[0][11]*SF[8] + P[2][11]*SF[7] + P[3][11]*SF[11] - P[12][11]*SF[15] + P[11][11]*SPP[10] - (P[10][11]*q0)/2;
|
|
nextP[2][11] = P[2][11] + P[0][11]*SF[6] + P[1][11]*SF[10] + P[3][11]*SF[8] + P[12][11]*SF[14] - P[10][11]*SPP[10] - (P[11][11]*q0)/2;
|
|
nextP[3][11] = P[3][11] + P[0][11]*SF[7] + P[1][11]*SF[6] + P[2][11]*SF[9] + P[10][11]*SF[15] - P[11][11]*SF[14] - (P[12][11]*q0)/2;
|
|
nextP[4][11] = P[4][11] + P[0][11]*SF[5] + P[1][11]*SF[3] - P[3][11]*SF[4] + P[2][11]*SPP[0] + P[13][11]*SPP[3] + P[14][11]*SPP[6] - P[15][11]*SPP[9];
|
|
nextP[5][11] = P[5][11] + P[0][11]*SF[4] + P[2][11]*SF[3] + P[3][11]*SF[5] - P[1][11]*SPP[0] - P[13][11]*SPP[8] + P[14][11]*SPP[2] + P[15][11]*SPP[5];
|
|
nextP[6][11] = P[6][11] + P[1][11]*SF[4] - P[2][11]*SF[5] + P[3][11]*SF[3] + P[0][11]*SPP[0] + P[13][11]*SPP[4] - P[14][11]*SPP[7] - P[15][11]*SPP[1];
|
|
nextP[7][11] = P[7][11] + P[4][11]*dt;
|
|
nextP[8][11] = P[8][11] + P[5][11]*dt;
|
|
nextP[9][11] = P[9][11] + P[6][11]*dt;
|
|
nextP[10][11] = P[10][11];
|
|
nextP[11][11] = P[11][11];
|
|
nextP[0][12] = P[0][12] + P[1][12]*SF[9] + P[2][12]*SF[11] + P[3][12]*SF[10] + P[10][12]*SF[14] + P[11][12]*SF[15] + P[12][12]*SPP[10];
|
|
nextP[1][12] = P[1][12] + P[0][12]*SF[8] + P[2][12]*SF[7] + P[3][12]*SF[11] - P[12][12]*SF[15] + P[11][12]*SPP[10] - (P[10][12]*q0)/2;
|
|
nextP[2][12] = P[2][12] + P[0][12]*SF[6] + P[1][12]*SF[10] + P[3][12]*SF[8] + P[12][12]*SF[14] - P[10][12]*SPP[10] - (P[11][12]*q0)/2;
|
|
nextP[3][12] = P[3][12] + P[0][12]*SF[7] + P[1][12]*SF[6] + P[2][12]*SF[9] + P[10][12]*SF[15] - P[11][12]*SF[14] - (P[12][12]*q0)/2;
|
|
nextP[4][12] = P[4][12] + P[0][12]*SF[5] + P[1][12]*SF[3] - P[3][12]*SF[4] + P[2][12]*SPP[0] + P[13][12]*SPP[3] + P[14][12]*SPP[6] - P[15][12]*SPP[9];
|
|
nextP[5][12] = P[5][12] + P[0][12]*SF[4] + P[2][12]*SF[3] + P[3][12]*SF[5] - P[1][12]*SPP[0] - P[13][12]*SPP[8] + P[14][12]*SPP[2] + P[15][12]*SPP[5];
|
|
nextP[6][12] = P[6][12] + P[1][12]*SF[4] - P[2][12]*SF[5] + P[3][12]*SF[3] + P[0][12]*SPP[0] + P[13][12]*SPP[4] - P[14][12]*SPP[7] - P[15][12]*SPP[1];
|
|
nextP[7][12] = P[7][12] + P[4][12]*dt;
|
|
nextP[8][12] = P[8][12] + P[5][12]*dt;
|
|
nextP[9][12] = P[9][12] + P[6][12]*dt;
|
|
nextP[10][12] = P[10][12];
|
|
nextP[11][12] = P[11][12];
|
|
nextP[12][12] = P[12][12];
|
|
|
|
if (stateIndexLim > 12) {
|
|
nextP[0][13] = P[0][13] + P[1][13]*SF[9] + P[2][13]*SF[11] + P[3][13]*SF[10] + P[10][13]*SF[14] + P[11][13]*SF[15] + P[12][13]*SPP[10];
|
|
nextP[1][13] = P[1][13] + P[0][13]*SF[8] + P[2][13]*SF[7] + P[3][13]*SF[11] - P[12][13]*SF[15] + P[11][13]*SPP[10] - (P[10][13]*q0)/2;
|
|
nextP[2][13] = P[2][13] + P[0][13]*SF[6] + P[1][13]*SF[10] + P[3][13]*SF[8] + P[12][13]*SF[14] - P[10][13]*SPP[10] - (P[11][13]*q0)/2;
|
|
nextP[3][13] = P[3][13] + P[0][13]*SF[7] + P[1][13]*SF[6] + P[2][13]*SF[9] + P[10][13]*SF[15] - P[11][13]*SF[14] - (P[12][13]*q0)/2;
|
|
nextP[4][13] = P[4][13] + P[0][13]*SF[5] + P[1][13]*SF[3] - P[3][13]*SF[4] + P[2][13]*SPP[0] + P[13][13]*SPP[3] + P[14][13]*SPP[6] - P[15][13]*SPP[9];
|
|
nextP[5][13] = P[5][13] + P[0][13]*SF[4] + P[2][13]*SF[3] + P[3][13]*SF[5] - P[1][13]*SPP[0] - P[13][13]*SPP[8] + P[14][13]*SPP[2] + P[15][13]*SPP[5];
|
|
nextP[6][13] = P[6][13] + P[1][13]*SF[4] - P[2][13]*SF[5] + P[3][13]*SF[3] + P[0][13]*SPP[0] + P[13][13]*SPP[4] - P[14][13]*SPP[7] - P[15][13]*SPP[1];
|
|
nextP[7][13] = P[7][13] + P[4][13]*dt;
|
|
nextP[8][13] = P[8][13] + P[5][13]*dt;
|
|
nextP[9][13] = P[9][13] + P[6][13]*dt;
|
|
nextP[10][13] = P[10][13];
|
|
nextP[11][13] = P[11][13];
|
|
nextP[12][13] = P[12][13];
|
|
nextP[13][13] = P[13][13];
|
|
nextP[0][14] = P[0][14] + P[1][14]*SF[9] + P[2][14]*SF[11] + P[3][14]*SF[10] + P[10][14]*SF[14] + P[11][14]*SF[15] + P[12][14]*SPP[10];
|
|
nextP[1][14] = P[1][14] + P[0][14]*SF[8] + P[2][14]*SF[7] + P[3][14]*SF[11] - P[12][14]*SF[15] + P[11][14]*SPP[10] - (P[10][14]*q0)/2;
|
|
nextP[2][14] = P[2][14] + P[0][14]*SF[6] + P[1][14]*SF[10] + P[3][14]*SF[8] + P[12][14]*SF[14] - P[10][14]*SPP[10] - (P[11][14]*q0)/2;
|
|
nextP[3][14] = P[3][14] + P[0][14]*SF[7] + P[1][14]*SF[6] + P[2][14]*SF[9] + P[10][14]*SF[15] - P[11][14]*SF[14] - (P[12][14]*q0)/2;
|
|
nextP[4][14] = P[4][14] + P[0][14]*SF[5] + P[1][14]*SF[3] - P[3][14]*SF[4] + P[2][14]*SPP[0] + P[13][14]*SPP[3] + P[14][14]*SPP[6] - P[15][14]*SPP[9];
|
|
nextP[5][14] = P[5][14] + P[0][14]*SF[4] + P[2][14]*SF[3] + P[3][14]*SF[5] - P[1][14]*SPP[0] - P[13][14]*SPP[8] + P[14][14]*SPP[2] + P[15][14]*SPP[5];
|
|
nextP[6][14] = P[6][14] + P[1][14]*SF[4] - P[2][14]*SF[5] + P[3][14]*SF[3] + P[0][14]*SPP[0] + P[13][14]*SPP[4] - P[14][14]*SPP[7] - P[15][14]*SPP[1];
|
|
nextP[7][14] = P[7][14] + P[4][14]*dt;
|
|
nextP[8][14] = P[8][14] + P[5][14]*dt;
|
|
nextP[9][14] = P[9][14] + P[6][14]*dt;
|
|
nextP[10][14] = P[10][14];
|
|
nextP[11][14] = P[11][14];
|
|
nextP[12][14] = P[12][14];
|
|
nextP[13][14] = P[13][14];
|
|
nextP[14][14] = P[14][14];
|
|
nextP[0][15] = P[0][15] + P[1][15]*SF[9] + P[2][15]*SF[11] + P[3][15]*SF[10] + P[10][15]*SF[14] + P[11][15]*SF[15] + P[12][15]*SPP[10];
|
|
nextP[1][15] = P[1][15] + P[0][15]*SF[8] + P[2][15]*SF[7] + P[3][15]*SF[11] - P[12][15]*SF[15] + P[11][15]*SPP[10] - (P[10][15]*q0)/2;
|
|
nextP[2][15] = P[2][15] + P[0][15]*SF[6] + P[1][15]*SF[10] + P[3][15]*SF[8] + P[12][15]*SF[14] - P[10][15]*SPP[10] - (P[11][15]*q0)/2;
|
|
nextP[3][15] = P[3][15] + P[0][15]*SF[7] + P[1][15]*SF[6] + P[2][15]*SF[9] + P[10][15]*SF[15] - P[11][15]*SF[14] - (P[12][15]*q0)/2;
|
|
nextP[4][15] = P[4][15] + P[0][15]*SF[5] + P[1][15]*SF[3] - P[3][15]*SF[4] + P[2][15]*SPP[0] + P[13][15]*SPP[3] + P[14][15]*SPP[6] - P[15][15]*SPP[9];
|
|
nextP[5][15] = P[5][15] + P[0][15]*SF[4] + P[2][15]*SF[3] + P[3][15]*SF[5] - P[1][15]*SPP[0] - P[13][15]*SPP[8] + P[14][15]*SPP[2] + P[15][15]*SPP[5];
|
|
nextP[6][15] = P[6][15] + P[1][15]*SF[4] - P[2][15]*SF[5] + P[3][15]*SF[3] + P[0][15]*SPP[0] + P[13][15]*SPP[4] - P[14][15]*SPP[7] - P[15][15]*SPP[1];
|
|
nextP[7][15] = P[7][15] + P[4][15]*dt;
|
|
nextP[8][15] = P[8][15] + P[5][15]*dt;
|
|
nextP[9][15] = P[9][15] + P[6][15]*dt;
|
|
nextP[10][15] = P[10][15];
|
|
nextP[11][15] = P[11][15];
|
|
nextP[12][15] = P[12][15];
|
|
nextP[13][15] = P[13][15];
|
|
nextP[14][15] = P[14][15];
|
|
nextP[15][15] = P[15][15];
|
|
|
|
if (stateIndexLim > 15) {
|
|
nextP[0][16] = P[0][16] + P[1][16]*SF[9] + P[2][16]*SF[11] + P[3][16]*SF[10] + P[10][16]*SF[14] + P[11][16]*SF[15] + P[12][16]*SPP[10];
|
|
nextP[1][16] = P[1][16] + P[0][16]*SF[8] + P[2][16]*SF[7] + P[3][16]*SF[11] - P[12][16]*SF[15] + P[11][16]*SPP[10] - (P[10][16]*q0)/2;
|
|
nextP[2][16] = P[2][16] + P[0][16]*SF[6] + P[1][16]*SF[10] + P[3][16]*SF[8] + P[12][16]*SF[14] - P[10][16]*SPP[10] - (P[11][16]*q0)/2;
|
|
nextP[3][16] = P[3][16] + P[0][16]*SF[7] + P[1][16]*SF[6] + P[2][16]*SF[9] + P[10][16]*SF[15] - P[11][16]*SF[14] - (P[12][16]*q0)/2;
|
|
nextP[4][16] = P[4][16] + P[0][16]*SF[5] + P[1][16]*SF[3] - P[3][16]*SF[4] + P[2][16]*SPP[0] + P[13][16]*SPP[3] + P[14][16]*SPP[6] - P[15][16]*SPP[9];
|
|
nextP[5][16] = P[5][16] + P[0][16]*SF[4] + P[2][16]*SF[3] + P[3][16]*SF[5] - P[1][16]*SPP[0] - P[13][16]*SPP[8] + P[14][16]*SPP[2] + P[15][16]*SPP[5];
|
|
nextP[6][16] = P[6][16] + P[1][16]*SF[4] - P[2][16]*SF[5] + P[3][16]*SF[3] + P[0][16]*SPP[0] + P[13][16]*SPP[4] - P[14][16]*SPP[7] - P[15][16]*SPP[1];
|
|
nextP[7][16] = P[7][16] + P[4][16]*dt;
|
|
nextP[8][16] = P[8][16] + P[5][16]*dt;
|
|
nextP[9][16] = P[9][16] + P[6][16]*dt;
|
|
nextP[10][16] = P[10][16];
|
|
nextP[11][16] = P[11][16];
|
|
nextP[12][16] = P[12][16];
|
|
nextP[13][16] = P[13][16];
|
|
nextP[14][16] = P[14][16];
|
|
nextP[15][16] = P[15][16];
|
|
nextP[16][16] = P[16][16];
|
|
nextP[0][17] = P[0][17] + P[1][17]*SF[9] + P[2][17]*SF[11] + P[3][17]*SF[10] + P[10][17]*SF[14] + P[11][17]*SF[15] + P[12][17]*SPP[10];
|
|
nextP[1][17] = P[1][17] + P[0][17]*SF[8] + P[2][17]*SF[7] + P[3][17]*SF[11] - P[12][17]*SF[15] + P[11][17]*SPP[10] - (P[10][17]*q0)/2;
|
|
nextP[2][17] = P[2][17] + P[0][17]*SF[6] + P[1][17]*SF[10] + P[3][17]*SF[8] + P[12][17]*SF[14] - P[10][17]*SPP[10] - (P[11][17]*q0)/2;
|
|
nextP[3][17] = P[3][17] + P[0][17]*SF[7] + P[1][17]*SF[6] + P[2][17]*SF[9] + P[10][17]*SF[15] - P[11][17]*SF[14] - (P[12][17]*q0)/2;
|
|
nextP[4][17] = P[4][17] + P[0][17]*SF[5] + P[1][17]*SF[3] - P[3][17]*SF[4] + P[2][17]*SPP[0] + P[13][17]*SPP[3] + P[14][17]*SPP[6] - P[15][17]*SPP[9];
|
|
nextP[5][17] = P[5][17] + P[0][17]*SF[4] + P[2][17]*SF[3] + P[3][17]*SF[5] - P[1][17]*SPP[0] - P[13][17]*SPP[8] + P[14][17]*SPP[2] + P[15][17]*SPP[5];
|
|
nextP[6][17] = P[6][17] + P[1][17]*SF[4] - P[2][17]*SF[5] + P[3][17]*SF[3] + P[0][17]*SPP[0] + P[13][17]*SPP[4] - P[14][17]*SPP[7] - P[15][17]*SPP[1];
|
|
nextP[7][17] = P[7][17] + P[4][17]*dt;
|
|
nextP[8][17] = P[8][17] + P[5][17]*dt;
|
|
nextP[9][17] = P[9][17] + P[6][17]*dt;
|
|
nextP[10][17] = P[10][17];
|
|
nextP[11][17] = P[11][17];
|
|
nextP[12][17] = P[12][17];
|
|
nextP[13][17] = P[13][17];
|
|
nextP[14][17] = P[14][17];
|
|
nextP[15][17] = P[15][17];
|
|
nextP[16][17] = P[16][17];
|
|
nextP[17][17] = P[17][17];
|
|
nextP[0][18] = P[0][18] + P[1][18]*SF[9] + P[2][18]*SF[11] + P[3][18]*SF[10] + P[10][18]*SF[14] + P[11][18]*SF[15] + P[12][18]*SPP[10];
|
|
nextP[1][18] = P[1][18] + P[0][18]*SF[8] + P[2][18]*SF[7] + P[3][18]*SF[11] - P[12][18]*SF[15] + P[11][18]*SPP[10] - (P[10][18]*q0)/2;
|
|
nextP[2][18] = P[2][18] + P[0][18]*SF[6] + P[1][18]*SF[10] + P[3][18]*SF[8] + P[12][18]*SF[14] - P[10][18]*SPP[10] - (P[11][18]*q0)/2;
|
|
nextP[3][18] = P[3][18] + P[0][18]*SF[7] + P[1][18]*SF[6] + P[2][18]*SF[9] + P[10][18]*SF[15] - P[11][18]*SF[14] - (P[12][18]*q0)/2;
|
|
nextP[4][18] = P[4][18] + P[0][18]*SF[5] + P[1][18]*SF[3] - P[3][18]*SF[4] + P[2][18]*SPP[0] + P[13][18]*SPP[3] + P[14][18]*SPP[6] - P[15][18]*SPP[9];
|
|
nextP[5][18] = P[5][18] + P[0][18]*SF[4] + P[2][18]*SF[3] + P[3][18]*SF[5] - P[1][18]*SPP[0] - P[13][18]*SPP[8] + P[14][18]*SPP[2] + P[15][18]*SPP[5];
|
|
nextP[6][18] = P[6][18] + P[1][18]*SF[4] - P[2][18]*SF[5] + P[3][18]*SF[3] + P[0][18]*SPP[0] + P[13][18]*SPP[4] - P[14][18]*SPP[7] - P[15][18]*SPP[1];
|
|
nextP[7][18] = P[7][18] + P[4][18]*dt;
|
|
nextP[8][18] = P[8][18] + P[5][18]*dt;
|
|
nextP[9][18] = P[9][18] + P[6][18]*dt;
|
|
nextP[10][18] = P[10][18];
|
|
nextP[11][18] = P[11][18];
|
|
nextP[12][18] = P[12][18];
|
|
nextP[13][18] = P[13][18];
|
|
nextP[14][18] = P[14][18];
|
|
nextP[15][18] = P[15][18];
|
|
nextP[16][18] = P[16][18];
|
|
nextP[17][18] = P[17][18];
|
|
nextP[18][18] = P[18][18];
|
|
nextP[0][19] = P[0][19] + P[1][19]*SF[9] + P[2][19]*SF[11] + P[3][19]*SF[10] + P[10][19]*SF[14] + P[11][19]*SF[15] + P[12][19]*SPP[10];
|
|
nextP[1][19] = P[1][19] + P[0][19]*SF[8] + P[2][19]*SF[7] + P[3][19]*SF[11] - P[12][19]*SF[15] + P[11][19]*SPP[10] - (P[10][19]*q0)/2;
|
|
nextP[2][19] = P[2][19] + P[0][19]*SF[6] + P[1][19]*SF[10] + P[3][19]*SF[8] + P[12][19]*SF[14] - P[10][19]*SPP[10] - (P[11][19]*q0)/2;
|
|
nextP[3][19] = P[3][19] + P[0][19]*SF[7] + P[1][19]*SF[6] + P[2][19]*SF[9] + P[10][19]*SF[15] - P[11][19]*SF[14] - (P[12][19]*q0)/2;
|
|
nextP[4][19] = P[4][19] + P[0][19]*SF[5] + P[1][19]*SF[3] - P[3][19]*SF[4] + P[2][19]*SPP[0] + P[13][19]*SPP[3] + P[14][19]*SPP[6] - P[15][19]*SPP[9];
|
|
nextP[5][19] = P[5][19] + P[0][19]*SF[4] + P[2][19]*SF[3] + P[3][19]*SF[5] - P[1][19]*SPP[0] - P[13][19]*SPP[8] + P[14][19]*SPP[2] + P[15][19]*SPP[5];
|
|
nextP[6][19] = P[6][19] + P[1][19]*SF[4] - P[2][19]*SF[5] + P[3][19]*SF[3] + P[0][19]*SPP[0] + P[13][19]*SPP[4] - P[14][19]*SPP[7] - P[15][19]*SPP[1];
|
|
nextP[7][19] = P[7][19] + P[4][19]*dt;
|
|
nextP[8][19] = P[8][19] + P[5][19]*dt;
|
|
nextP[9][19] = P[9][19] + P[6][19]*dt;
|
|
nextP[10][19] = P[10][19];
|
|
nextP[11][19] = P[11][19];
|
|
nextP[12][19] = P[12][19];
|
|
nextP[13][19] = P[13][19];
|
|
nextP[14][19] = P[14][19];
|
|
nextP[15][19] = P[15][19];
|
|
nextP[16][19] = P[16][19];
|
|
nextP[17][19] = P[17][19];
|
|
nextP[18][19] = P[18][19];
|
|
nextP[19][19] = P[19][19];
|
|
nextP[0][20] = P[0][20] + P[1][20]*SF[9] + P[2][20]*SF[11] + P[3][20]*SF[10] + P[10][20]*SF[14] + P[11][20]*SF[15] + P[12][20]*SPP[10];
|
|
nextP[1][20] = P[1][20] + P[0][20]*SF[8] + P[2][20]*SF[7] + P[3][20]*SF[11] - P[12][20]*SF[15] + P[11][20]*SPP[10] - (P[10][20]*q0)/2;
|
|
nextP[2][20] = P[2][20] + P[0][20]*SF[6] + P[1][20]*SF[10] + P[3][20]*SF[8] + P[12][20]*SF[14] - P[10][20]*SPP[10] - (P[11][20]*q0)/2;
|
|
nextP[3][20] = P[3][20] + P[0][20]*SF[7] + P[1][20]*SF[6] + P[2][20]*SF[9] + P[10][20]*SF[15] - P[11][20]*SF[14] - (P[12][20]*q0)/2;
|
|
nextP[4][20] = P[4][20] + P[0][20]*SF[5] + P[1][20]*SF[3] - P[3][20]*SF[4] + P[2][20]*SPP[0] + P[13][20]*SPP[3] + P[14][20]*SPP[6] - P[15][20]*SPP[9];
|
|
nextP[5][20] = P[5][20] + P[0][20]*SF[4] + P[2][20]*SF[3] + P[3][20]*SF[5] - P[1][20]*SPP[0] - P[13][20]*SPP[8] + P[14][20]*SPP[2] + P[15][20]*SPP[5];
|
|
nextP[6][20] = P[6][20] + P[1][20]*SF[4] - P[2][20]*SF[5] + P[3][20]*SF[3] + P[0][20]*SPP[0] + P[13][20]*SPP[4] - P[14][20]*SPP[7] - P[15][20]*SPP[1];
|
|
nextP[7][20] = P[7][20] + P[4][20]*dt;
|
|
nextP[8][20] = P[8][20] + P[5][20]*dt;
|
|
nextP[9][20] = P[9][20] + P[6][20]*dt;
|
|
nextP[10][20] = P[10][20];
|
|
nextP[11][20] = P[11][20];
|
|
nextP[12][20] = P[12][20];
|
|
nextP[13][20] = P[13][20];
|
|
nextP[14][20] = P[14][20];
|
|
nextP[15][20] = P[15][20];
|
|
nextP[16][20] = P[16][20];
|
|
nextP[17][20] = P[17][20];
|
|
nextP[18][20] = P[18][20];
|
|
nextP[19][20] = P[19][20];
|
|
nextP[20][20] = P[20][20];
|
|
nextP[0][21] = P[0][21] + P[1][21]*SF[9] + P[2][21]*SF[11] + P[3][21]*SF[10] + P[10][21]*SF[14] + P[11][21]*SF[15] + P[12][21]*SPP[10];
|
|
nextP[1][21] = P[1][21] + P[0][21]*SF[8] + P[2][21]*SF[7] + P[3][21]*SF[11] - P[12][21]*SF[15] + P[11][21]*SPP[10] - (P[10][21]*q0)/2;
|
|
nextP[2][21] = P[2][21] + P[0][21]*SF[6] + P[1][21]*SF[10] + P[3][21]*SF[8] + P[12][21]*SF[14] - P[10][21]*SPP[10] - (P[11][21]*q0)/2;
|
|
nextP[3][21] = P[3][21] + P[0][21]*SF[7] + P[1][21]*SF[6] + P[2][21]*SF[9] + P[10][21]*SF[15] - P[11][21]*SF[14] - (P[12][21]*q0)/2;
|
|
nextP[4][21] = P[4][21] + P[0][21]*SF[5] + P[1][21]*SF[3] - P[3][21]*SF[4] + P[2][21]*SPP[0] + P[13][21]*SPP[3] + P[14][21]*SPP[6] - P[15][21]*SPP[9];
|
|
nextP[5][21] = P[5][21] + P[0][21]*SF[4] + P[2][21]*SF[3] + P[3][21]*SF[5] - P[1][21]*SPP[0] - P[13][21]*SPP[8] + P[14][21]*SPP[2] + P[15][21]*SPP[5];
|
|
nextP[6][21] = P[6][21] + P[1][21]*SF[4] - P[2][21]*SF[5] + P[3][21]*SF[3] + P[0][21]*SPP[0] + P[13][21]*SPP[4] - P[14][21]*SPP[7] - P[15][21]*SPP[1];
|
|
nextP[7][21] = P[7][21] + P[4][21]*dt;
|
|
nextP[8][21] = P[8][21] + P[5][21]*dt;
|
|
nextP[9][21] = P[9][21] + P[6][21]*dt;
|
|
nextP[10][21] = P[10][21];
|
|
nextP[11][21] = P[11][21];
|
|
nextP[12][21] = P[12][21];
|
|
nextP[13][21] = P[13][21];
|
|
nextP[14][21] = P[14][21];
|
|
nextP[15][21] = P[15][21];
|
|
nextP[16][21] = P[16][21];
|
|
nextP[17][21] = P[17][21];
|
|
nextP[18][21] = P[18][21];
|
|
nextP[19][21] = P[19][21];
|
|
nextP[20][21] = P[20][21];
|
|
nextP[21][21] = P[21][21];
|
|
|
|
if (stateIndexLim > 21) {
|
|
nextP[0][22] = P[0][22] + P[1][22]*SF[9] + P[2][22]*SF[11] + P[3][22]*SF[10] + P[10][22]*SF[14] + P[11][22]*SF[15] + P[12][22]*SPP[10];
|
|
nextP[1][22] = P[1][22] + P[0][22]*SF[8] + P[2][22]*SF[7] + P[3][22]*SF[11] - P[12][22]*SF[15] + P[11][22]*SPP[10] - (P[10][22]*q0)/2;
|
|
nextP[2][22] = P[2][22] + P[0][22]*SF[6] + P[1][22]*SF[10] + P[3][22]*SF[8] + P[12][22]*SF[14] - P[10][22]*SPP[10] - (P[11][22]*q0)/2;
|
|
nextP[3][22] = P[3][22] + P[0][22]*SF[7] + P[1][22]*SF[6] + P[2][22]*SF[9] + P[10][22]*SF[15] - P[11][22]*SF[14] - (P[12][22]*q0)/2;
|
|
nextP[4][22] = P[4][22] + P[0][22]*SF[5] + P[1][22]*SF[3] - P[3][22]*SF[4] + P[2][22]*SPP[0] + P[13][22]*SPP[3] + P[14][22]*SPP[6] - P[15][22]*SPP[9];
|
|
nextP[5][22] = P[5][22] + P[0][22]*SF[4] + P[2][22]*SF[3] + P[3][22]*SF[5] - P[1][22]*SPP[0] - P[13][22]*SPP[8] + P[14][22]*SPP[2] + P[15][22]*SPP[5];
|
|
nextP[6][22] = P[6][22] + P[1][22]*SF[4] - P[2][22]*SF[5] + P[3][22]*SF[3] + P[0][22]*SPP[0] + P[13][22]*SPP[4] - P[14][22]*SPP[7] - P[15][22]*SPP[1];
|
|
nextP[7][22] = P[7][22] + P[4][22]*dt;
|
|
nextP[8][22] = P[8][22] + P[5][22]*dt;
|
|
nextP[9][22] = P[9][22] + P[6][22]*dt;
|
|
nextP[10][22] = P[10][22];
|
|
nextP[11][22] = P[11][22];
|
|
nextP[12][22] = P[12][22];
|
|
nextP[13][22] = P[13][22];
|
|
nextP[14][22] = P[14][22];
|
|
nextP[15][22] = P[15][22];
|
|
nextP[16][22] = P[16][22];
|
|
nextP[17][22] = P[17][22];
|
|
nextP[18][22] = P[18][22];
|
|
nextP[19][22] = P[19][22];
|
|
nextP[20][22] = P[20][22];
|
|
nextP[21][22] = P[21][22];
|
|
nextP[22][22] = P[22][22];
|
|
nextP[0][23] = P[0][23] + P[1][23]*SF[9] + P[2][23]*SF[11] + P[3][23]*SF[10] + P[10][23]*SF[14] + P[11][23]*SF[15] + P[12][23]*SPP[10];
|
|
nextP[1][23] = P[1][23] + P[0][23]*SF[8] + P[2][23]*SF[7] + P[3][23]*SF[11] - P[12][23]*SF[15] + P[11][23]*SPP[10] - (P[10][23]*q0)/2;
|
|
nextP[2][23] = P[2][23] + P[0][23]*SF[6] + P[1][23]*SF[10] + P[3][23]*SF[8] + P[12][23]*SF[14] - P[10][23]*SPP[10] - (P[11][23]*q0)/2;
|
|
nextP[3][23] = P[3][23] + P[0][23]*SF[7] + P[1][23]*SF[6] + P[2][23]*SF[9] + P[10][23]*SF[15] - P[11][23]*SF[14] - (P[12][23]*q0)/2;
|
|
nextP[4][23] = P[4][23] + P[0][23]*SF[5] + P[1][23]*SF[3] - P[3][23]*SF[4] + P[2][23]*SPP[0] + P[13][23]*SPP[3] + P[14][23]*SPP[6] - P[15][23]*SPP[9];
|
|
nextP[5][23] = P[5][23] + P[0][23]*SF[4] + P[2][23]*SF[3] + P[3][23]*SF[5] - P[1][23]*SPP[0] - P[13][23]*SPP[8] + P[14][23]*SPP[2] + P[15][23]*SPP[5];
|
|
nextP[6][23] = P[6][23] + P[1][23]*SF[4] - P[2][23]*SF[5] + P[3][23]*SF[3] + P[0][23]*SPP[0] + P[13][23]*SPP[4] - P[14][23]*SPP[7] - P[15][23]*SPP[1];
|
|
nextP[7][23] = P[7][23] + P[4][23]*dt;
|
|
nextP[8][23] = P[8][23] + P[5][23]*dt;
|
|
nextP[9][23] = P[9][23] + P[6][23]*dt;
|
|
nextP[10][23] = P[10][23];
|
|
nextP[11][23] = P[11][23];
|
|
nextP[12][23] = P[12][23];
|
|
nextP[13][23] = P[13][23];
|
|
nextP[14][23] = P[14][23];
|
|
nextP[15][23] = P[15][23];
|
|
nextP[16][23] = P[16][23];
|
|
nextP[17][23] = P[17][23];
|
|
nextP[18][23] = P[18][23];
|
|
nextP[19][23] = P[19][23];
|
|
nextP[20][23] = P[20][23];
|
|
nextP[21][23] = P[21][23];
|
|
nextP[22][23] = P[22][23];
|
|
nextP[23][23] = P[23][23];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// add the general state process noise variances
|
|
if (stateIndexLim > 9) {
|
|
for (uint8_t i=10; i<=stateIndexLim; i++) {
|
|
nextP[i][i] = nextP[i][i] + processNoiseVariance[i-10];
|
|
}
|
|
}
|
|
|
|
// if the total position variance exceeds 1e4 (100m), then stop covariance
|
|
// growth by setting the predicted to the previous values
|
|
// This prevent an ill conditioned matrix from occurring for long periods
|
|
// without GPS
|
|
if ((P[7][7] + P[8][8]) > 1e4f) {
|
|
for (uint8_t i=7; i<=8; i++)
|
|
{
|
|
for (uint8_t j=0; j<=stateIndexLim; j++)
|
|
{
|
|
nextP[i][j] = P[i][j];
|
|
nextP[j][i] = P[j][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// covariance matrix is symmetrical, so copy diagonals and copy lower half in nextP
|
|
// to lower and upper half in P
|
|
for (uint8_t row = 0; row <= stateIndexLim; row++) {
|
|
// copy diagonals
|
|
P[row][row] = nextP[row][row];
|
|
// copy off diagonals
|
|
for (uint8_t column = 0 ; column < row; column++) {
|
|
P[row][column] = P[column][row] = nextP[column][row];
|
|
}
|
|
}
|
|
|
|
// constrain values to prevent ill-conditioning
|
|
ConstrainVariances();
|
|
|
|
hal.util->perf_end(_perf_CovariancePrediction);
|
|
}
|
|
|
|
// zero specified range of rows in the state covariance matrix
|
|
void NavEKF3_core::zeroRows(Matrix24 &covMat, uint8_t first, uint8_t last)
|
|
{
|
|
uint8_t row;
|
|
for (row=first; row<=last; row++)
|
|
{
|
|
memset(&covMat[row][0], 0, sizeof(covMat[0][0])*24);
|
|
}
|
|
}
|
|
|
|
// zero specified range of columns in the state covariance matrix
|
|
void NavEKF3_core::zeroCols(Matrix24 &covMat, uint8_t first, uint8_t last)
|
|
{
|
|
uint8_t row;
|
|
for (row=0; row<=23; row++)
|
|
{
|
|
memset(&covMat[row][first], 0, sizeof(covMat[0][0])*(1+last-first));
|
|
}
|
|
}
|
|
|
|
// reset the output data to the current EKF state
|
|
void NavEKF3_core::StoreOutputReset()
|
|
{
|
|
outputDataNew.quat = stateStruct.quat;
|
|
outputDataNew.velocity = stateStruct.velocity;
|
|
outputDataNew.position = stateStruct.position;
|
|
// write current measurement to entire table
|
|
for (uint8_t i=0; i<imu_buffer_length; i++) {
|
|
storedOutput[i] = outputDataNew;
|
|
}
|
|
outputDataDelayed = outputDataNew;
|
|
// reset the states for the complementary filter used to provide a vertical position derivative output
|
|
posDown = stateStruct.position.z;
|
|
posDownDerivative = stateStruct.velocity.z;
|
|
}
|
|
|
|
// Reset the stored output quaternion history to current EKF state
|
|
void NavEKF3_core::StoreQuatReset()
|
|
{
|
|
outputDataNew.quat = stateStruct.quat;
|
|
// write current measurement to entire table
|
|
for (uint8_t i=0; i<imu_buffer_length; i++) {
|
|
storedOutput[i].quat = outputDataNew.quat;
|
|
}
|
|
outputDataDelayed.quat = outputDataNew.quat;
|
|
}
|
|
|
|
// Rotate the stored output quaternion history through a quaternion rotation
|
|
void NavEKF3_core::StoreQuatRotate(const Quaternion &deltaQuat)
|
|
{
|
|
outputDataNew.quat = outputDataNew.quat*deltaQuat;
|
|
// write current measurement to entire table
|
|
for (uint8_t i=0; i<imu_buffer_length; i++) {
|
|
storedOutput[i].quat = storedOutput[i].quat*deltaQuat;
|
|
}
|
|
outputDataDelayed.quat = outputDataDelayed.quat*deltaQuat;
|
|
}
|
|
|
|
// calculate nav to body quaternions from body to nav rotation matrix
|
|
void NavEKF3_core::quat2Tbn(Matrix3f &Tbn, const Quaternion &quat) const
|
|
{
|
|
// Calculate the body to nav cosine matrix
|
|
quat.rotation_matrix(Tbn);
|
|
}
|
|
|
|
// force symmetry on the covariance matrix to prevent ill-conditioning
|
|
void NavEKF3_core::ForceSymmetry()
|
|
{
|
|
for (uint8_t i=1; i<=stateIndexLim; i++)
|
|
{
|
|
for (uint8_t j=0; j<=i-1; j++)
|
|
{
|
|
float temp = 0.5f*(P[i][j] + P[j][i]);
|
|
P[i][j] = temp;
|
|
P[j][i] = temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
// constrain variances (diagonal terms) in the state covariance matrix to prevent ill-conditioning
|
|
// if states are inactive, zero the corresponding off-diagonals
|
|
void NavEKF3_core::ConstrainVariances()
|
|
{
|
|
for (uint8_t i=0; i<=3; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0f); // attitude error
|
|
for (uint8_t i=4; i<=6; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e3f); // velocities
|
|
for (uint8_t i=7; i<=8; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e6f);
|
|
P[9][9] = constrain_float(P[9][9],0.0f,1.0e6f); // vertical position
|
|
|
|
if (!inhibitDelAngBiasStates) {
|
|
for (uint8_t i=10; i<=12; i++) P[i][i] = constrain_float(P[i][i],0.0f,sq(0.175f * dtEkfAvg));
|
|
} else {
|
|
zeroCols(P,10,12);
|
|
zeroRows(P,10,12);
|
|
}
|
|
|
|
if (!inhibitDelVelBiasStates) {
|
|
// limit delta velocity bias state variance levels and request a reset if below the safe minimum
|
|
bool resetRequired = false;
|
|
for (uint8_t i=13; i<=15; i++) {
|
|
if (P[i][i] > 1E-9f) {
|
|
// variance is above the safe minimum
|
|
P[i][i] = fminf(P[i][i], sq(10.0f * dtEkfAvg));
|
|
} else {
|
|
// Set the variance to the target minimum and request a covariance reset
|
|
P[i][i] = 1E-8f;
|
|
resetRequired = true;
|
|
}
|
|
}
|
|
|
|
// If any one axis is below the safe minimum, all delta velocity covariance terms must be reset to zero
|
|
if (resetRequired) {
|
|
float delVelBiasVar[3];
|
|
// store all delta velocity bias variances
|
|
for (uint8_t i=0; i<=2; i++) {
|
|
delVelBiasVar[i] = P[i+13][i+13];
|
|
}
|
|
// reset all delta velocity bias covariances
|
|
zeroCols(P,13,15);
|
|
// restore all delta velocity bias variances
|
|
for (uint8_t i=0; i<=2; i++) {
|
|
P[i+13][i+13] = delVelBiasVar[i];
|
|
}
|
|
}
|
|
|
|
} else {
|
|
zeroCols(P,13,15);
|
|
zeroRows(P,13,15);
|
|
}
|
|
|
|
if (!inhibitMagStates) {
|
|
for (uint8_t i=16; i<=18; i++) P[i][i] = constrain_float(P[i][i],0.0f,0.01f); // earth magnetic field
|
|
for (uint8_t i=19; i<=21; i++) P[i][i] = constrain_float(P[i][i],0.0f,0.01f); // body magnetic field
|
|
} else {
|
|
zeroCols(P,16,21);
|
|
zeroRows(P,16,21);
|
|
}
|
|
|
|
if (!inhibitWindStates) {
|
|
for (uint8_t i=22; i<=23; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e3f);
|
|
} else {
|
|
zeroCols(P,22,23);
|
|
zeroRows(P,22,23);
|
|
}
|
|
}
|
|
|
|
// constrain states to prevent ill-conditioning
|
|
void NavEKF3_core::ConstrainStates()
|
|
{
|
|
// quaternions are limited between +-1
|
|
for (uint8_t i=0; i<=3; i++) statesArray[i] = constrain_float(statesArray[i],-1.0f,1.0f);
|
|
// velocity limit 500 m/sec (could set this based on some multiple of max airspeed * EAS2TAS)
|
|
for (uint8_t i=4; i<=6; i++) statesArray[i] = constrain_float(statesArray[i],-5.0e2f,5.0e2f);
|
|
// position limit 1000 km - TODO apply circular limit
|
|
for (uint8_t i=7; i<=8; i++) statesArray[i] = constrain_float(statesArray[i],-1.0e6f,1.0e6f);
|
|
// height limit covers home alt on everest through to home alt at SL and balloon drop
|
|
stateStruct.position.z = constrain_float(stateStruct.position.z,-4.0e4f,1.0e4f);
|
|
// gyro bias limit (this needs to be set based on manufacturers specs)
|
|
for (uint8_t i=10; i<=12; i++) statesArray[i] = constrain_float(statesArray[i],-GYRO_BIAS_LIMIT*dtEkfAvg,GYRO_BIAS_LIMIT*dtEkfAvg);
|
|
// the accelerometer bias limit is controlled by a user adjustable parameter
|
|
for (uint8_t i=13; i<=15; i++) statesArray[i] = constrain_float(statesArray[i],-frontend->_accBiasLim*dtEkfAvg,frontend->_accBiasLim*dtEkfAvg);
|
|
// earth magnetic field limit
|
|
for (uint8_t i=16; i<=18; i++) statesArray[i] = constrain_float(statesArray[i],-1.0f,1.0f);
|
|
// body magnetic field limit
|
|
for (uint8_t i=19; i<=21; i++) statesArray[i] = constrain_float(statesArray[i],-0.5f,0.5f);
|
|
// wind velocity limit 100 m/s (could be based on some multiple of max airspeed * EAS2TAS) - TODO apply circular limit
|
|
for (uint8_t i=22; i<=23; i++) statesArray[i] = constrain_float(statesArray[i],-100.0f,100.0f);
|
|
// constrain the terrain state to be below the vehicle height unless we are using terrain as the height datum
|
|
if (!inhibitGndState) {
|
|
terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd);
|
|
}
|
|
}
|
|
|
|
// calculate the NED earth spin vector in rad/sec
|
|
void NavEKF3_core::calcEarthRateNED(Vector3f &omega, int32_t latitude) const
|
|
{
|
|
float lat_rad = radians(latitude*1.0e-7f);
|
|
omega.x = earthRate*cosf(lat_rad);
|
|
omega.y = 0;
|
|
omega.z = -earthRate*sinf(lat_rad);
|
|
}
|
|
|
|
// initialise the earth magnetic field states using declination, supplied roll/pitch
|
|
// and magnetometer measurements and return initial attitude quaternion
|
|
Quaternion NavEKF3_core::calcQuatAndFieldStates(float roll, float pitch)
|
|
{
|
|
// declare local variables required to calculate initial orientation and magnetic field
|
|
float yaw;
|
|
Matrix3f Tbn;
|
|
Vector3f initMagNED;
|
|
Quaternion initQuat;
|
|
|
|
if (use_compass()) {
|
|
// calculate rotation matrix from body to NED frame
|
|
Tbn.from_euler(roll, pitch, 0.0f);
|
|
|
|
// read the magnetometer data
|
|
readMagData();
|
|
|
|
// rotate the magnetic field into NED axes
|
|
initMagNED = Tbn * magDataDelayed.mag;
|
|
|
|
// calculate heading of mag field rel to body heading
|
|
float magHeading = atan2f(initMagNED.y, initMagNED.x);
|
|
|
|
// get the magnetic declination
|
|
float magDecAng = use_compass() ? _ahrs->get_compass()->get_declination() : 0;
|
|
|
|
// calculate yaw angle rel to true north
|
|
yaw = magDecAng - magHeading;
|
|
|
|
// calculate initial filter quaternion states using yaw from magnetometer
|
|
// store the yaw change so that it can be retrieved externally for use by the control loops to prevent yaw disturbances following a reset
|
|
Vector3f tempEuler;
|
|
stateStruct.quat.to_euler(tempEuler.x, tempEuler.y, tempEuler.z);
|
|
// this check ensures we accumulate the resets that occur within a single iteration of the EKF
|
|
if (imuSampleTime_ms != lastYawReset_ms) {
|
|
yawResetAngle = 0.0f;
|
|
}
|
|
yawResetAngle += wrap_PI(yaw - tempEuler.z);
|
|
lastYawReset_ms = imuSampleTime_ms;
|
|
// calculate an initial quaternion using the new yaw value
|
|
initQuat.from_euler(roll, pitch, yaw);
|
|
// zero the attitude covariances because the correlations will now be invalid
|
|
zeroAttCovOnly();
|
|
|
|
// calculate initial Tbn matrix and rotate Mag measurements into NED
|
|
// to set initial NED magnetic field states
|
|
// don't do this if the earth field has already been learned
|
|
if (!magFieldLearned) {
|
|
initQuat.rotation_matrix(Tbn);
|
|
stateStruct.earth_magfield = Tbn * magDataDelayed.mag;
|
|
|
|
// set the NE earth magnetic field states using the published declination
|
|
// and set the corresponding variances and covariances
|
|
alignMagStateDeclination();
|
|
|
|
// set the remaining variances and covariances
|
|
zeroRows(P,18,21);
|
|
zeroCols(P,18,21);
|
|
P[18][18] = sq(frontend->_magNoise);
|
|
P[19][19] = P[18][18];
|
|
P[20][20] = P[18][18];
|
|
P[21][21] = P[18][18];
|
|
|
|
}
|
|
|
|
// record the fact we have initialised the magnetic field states
|
|
recordMagReset();
|
|
|
|
// clear mag state reset request
|
|
magStateResetRequest = false;
|
|
|
|
} else {
|
|
// this function should not be called if there is no compass data but if it is, return the
|
|
// current attitude
|
|
initQuat = stateStruct.quat;
|
|
}
|
|
|
|
// return attitude quaternion
|
|
return initQuat;
|
|
}
|
|
|
|
// zero the attitude covariances, but preserve the variances
|
|
void NavEKF3_core::zeroAttCovOnly()
|
|
{
|
|
float varTemp[4];
|
|
for (uint8_t index=0; index<=3; index++) {
|
|
varTemp[index] = P[index][index];
|
|
}
|
|
zeroCols(P,0,3);
|
|
zeroRows(P,0,3);
|
|
for (uint8_t index=0; index<=3; index++) {
|
|
P[index][index] = varTemp[index];
|
|
}
|
|
}
|
|
|
|
// calculate the variances for the rotation vector equivalent
|
|
Vector3f NavEKF3_core::calcRotVecVariances()
|
|
{
|
|
Vector3f rotVarVec;
|
|
float q0 = stateStruct.quat[0];
|
|
float q1 = stateStruct.quat[1];
|
|
float q2 = stateStruct.quat[2];
|
|
float q3 = stateStruct.quat[3];
|
|
if (q0 < 0) {
|
|
q0 = -q0;
|
|
q1 = -q1;
|
|
q2 = -q2;
|
|
q3 = -q3;
|
|
}
|
|
float t2 = q0*q0;
|
|
float t3 = acosf(q0);
|
|
float t4 = -t2+1.0f;
|
|
float t5 = t2-1.0f;
|
|
if ((t4 > 1e-9f) && (t5 < -1e-9f)) {
|
|
float t6 = 1.0f/t5;
|
|
float t7 = q1*t6*2.0f;
|
|
float t8 = 1.0f/powf(t4,1.5f);
|
|
float t9 = q0*q1*t3*t8*2.0f;
|
|
float t10 = t7+t9;
|
|
float t11 = 1.0f/sqrtf(t4);
|
|
float t12 = q2*t6*2.0f;
|
|
float t13 = q0*q2*t3*t8*2.0f;
|
|
float t14 = t12+t13;
|
|
float t15 = q3*t6*2.0f;
|
|
float t16 = q0*q3*t3*t8*2.0f;
|
|
float t17 = t15+t16;
|
|
rotVarVec.x = t10*(P[0][0]*t10+P[1][0]*t3*t11*2.0f)+t3*t11*(P[0][1]*t10+P[1][1]*t3*t11*2.0f)*2.0f;
|
|
rotVarVec.y = t14*(P[0][0]*t14+P[2][0]*t3*t11*2.0f)+t3*t11*(P[0][2]*t14+P[2][2]*t3*t11*2.0f)*2.0f;
|
|
rotVarVec.z = t17*(P[0][0]*t17+P[3][0]*t3*t11*2.0f)+t3*t11*(P[0][3]*t17+P[3][3]*t3*t11*2.0f)*2.0f;
|
|
} else {
|
|
rotVarVec.x = 4.0f * P[1][1];
|
|
rotVarVec.y = 4.0f * P[2][2];
|
|
rotVarVec.z = 4.0f * P[3][3];
|
|
}
|
|
|
|
return rotVarVec;
|
|
}
|
|
|
|
// initialise the quaternion covariances using rotation vector variances
|
|
void NavEKF3_core::initialiseQuatCovariances(const Vector3f &rotVarVec)
|
|
{
|
|
// calculate an equivalent rotation vector from the quaternion
|
|
float q0 = stateStruct.quat[0];
|
|
float q1 = stateStruct.quat[1];
|
|
float q2 = stateStruct.quat[2];
|
|
float q3 = stateStruct.quat[3];
|
|
if (q0 < 0) {
|
|
q0 = -q0;
|
|
q1 = -q1;
|
|
q2 = -q2;
|
|
q3 = -q3;
|
|
}
|
|
float delta = 2.0f*acosf(q0);
|
|
float scaler;
|
|
if (fabsf(delta) > 1e-6f) {
|
|
scaler = (delta/sinf(delta*0.5f));
|
|
} else {
|
|
scaler = 2.0f;
|
|
}
|
|
float rotX = scaler*q1;
|
|
float rotY = scaler*q2;
|
|
float rotZ = scaler*q3;
|
|
|
|
// autocode generated using matlab symbolic toolbox
|
|
float t2 = rotX*rotX;
|
|
float t4 = rotY*rotY;
|
|
float t5 = rotZ*rotZ;
|
|
float t6 = t2+t4+t5;
|
|
if (t6 > 1e-9f) {
|
|
float t7 = sqrtf(t6);
|
|
float t8 = t7*0.5f;
|
|
float t3 = sinf(t8);
|
|
float t9 = t3*t3;
|
|
float t10 = 1.0f/t6;
|
|
float t11 = 1.0f/sqrtf(t6);
|
|
float t12 = cosf(t8);
|
|
float t13 = 1.0f/powf(t6,1.5f);
|
|
float t14 = t3*t11;
|
|
float t15 = rotX*rotY*t3*t13;
|
|
float t16 = rotX*rotZ*t3*t13;
|
|
float t17 = rotY*rotZ*t3*t13;
|
|
float t18 = t2*t10*t12*0.5f;
|
|
float t27 = t2*t3*t13;
|
|
float t19 = t14+t18-t27;
|
|
float t23 = rotX*rotY*t10*t12*0.5f;
|
|
float t28 = t15-t23;
|
|
float t20 = rotY*rotVarVec.y*t3*t11*t28*0.5f;
|
|
float t25 = rotX*rotZ*t10*t12*0.5f;
|
|
float t31 = t16-t25;
|
|
float t21 = rotZ*rotVarVec.z*t3*t11*t31*0.5f;
|
|
float t22 = t20+t21-rotX*rotVarVec.x*t3*t11*t19*0.5f;
|
|
float t24 = t15-t23;
|
|
float t26 = t16-t25;
|
|
float t29 = t4*t10*t12*0.5f;
|
|
float t34 = t3*t4*t13;
|
|
float t30 = t14+t29-t34;
|
|
float t32 = t5*t10*t12*0.5f;
|
|
float t40 = t3*t5*t13;
|
|
float t33 = t14+t32-t40;
|
|
float t36 = rotY*rotZ*t10*t12*0.5f;
|
|
float t39 = t17-t36;
|
|
float t35 = rotZ*rotVarVec.z*t3*t11*t39*0.5f;
|
|
float t37 = t15-t23;
|
|
float t38 = t17-t36;
|
|
float t41 = rotVarVec.x*(t15-t23)*(t16-t25);
|
|
float t42 = t41-rotVarVec.y*t30*t39-rotVarVec.z*t33*t39;
|
|
float t43 = t16-t25;
|
|
float t44 = t17-t36;
|
|
|
|
// zero all the quaternion covariances
|
|
zeroRows(P,0,3);
|
|
zeroCols(P,0,3);
|
|
|
|
// Update the quaternion internal covariances using auto-code generated using matlab symbolic toolbox
|
|
P[0][0] = rotVarVec.x*t2*t9*t10*0.25f+rotVarVec.y*t4*t9*t10*0.25f+rotVarVec.z*t5*t9*t10*0.25f;
|
|
P[0][1] = t22;
|
|
P[0][2] = t35+rotX*rotVarVec.x*t3*t11*(t15-rotX*rotY*t10*t12*0.5f)*0.5f-rotY*rotVarVec.y*t3*t11*t30*0.5f;
|
|
P[0][3] = rotX*rotVarVec.x*t3*t11*(t16-rotX*rotZ*t10*t12*0.5f)*0.5f+rotY*rotVarVec.y*t3*t11*(t17-rotY*rotZ*t10*t12*0.5f)*0.5f-rotZ*rotVarVec.z*t3*t11*t33*0.5f;
|
|
P[1][0] = t22;
|
|
P[1][1] = rotVarVec.x*(t19*t19)+rotVarVec.y*(t24*t24)+rotVarVec.z*(t26*t26);
|
|
P[1][2] = rotVarVec.z*(t16-t25)*(t17-rotY*rotZ*t10*t12*0.5f)-rotVarVec.x*t19*t28-rotVarVec.y*t28*t30;
|
|
P[1][3] = rotVarVec.y*(t15-t23)*(t17-rotY*rotZ*t10*t12*0.5f)-rotVarVec.x*t19*t31-rotVarVec.z*t31*t33;
|
|
P[2][0] = t35-rotY*rotVarVec.y*t3*t11*t30*0.5f+rotX*rotVarVec.x*t3*t11*(t15-t23)*0.5f;
|
|
P[2][1] = rotVarVec.z*(t16-t25)*(t17-t36)-rotVarVec.x*t19*t28-rotVarVec.y*t28*t30;
|
|
P[2][2] = rotVarVec.y*(t30*t30)+rotVarVec.x*(t37*t37)+rotVarVec.z*(t38*t38);
|
|
P[2][3] = t42;
|
|
P[3][0] = rotZ*rotVarVec.z*t3*t11*t33*(-0.5f)+rotX*rotVarVec.x*t3*t11*(t16-t25)*0.5f+rotY*rotVarVec.y*t3*t11*(t17-t36)*0.5f;
|
|
P[3][1] = rotVarVec.y*(t15-t23)*(t17-t36)-rotVarVec.x*t19*t31-rotVarVec.z*t31*t33;
|
|
P[3][2] = t42;
|
|
P[3][3] = rotVarVec.z*(t33*t33)+rotVarVec.x*(t43*t43)+rotVarVec.y*(t44*t44);
|
|
|
|
} else {
|
|
// the equations are badly conditioned so use a small angle approximation
|
|
P[0][0] = 0.0f;
|
|
P[0][1] = 0.0f;
|
|
P[0][2] = 0.0f;
|
|
P[0][3] = 0.0f;
|
|
P[1][0] = 0.0f;
|
|
P[1][1] = 0.25f*rotVarVec.x;
|
|
P[1][2] = 0.0f;
|
|
P[1][3] = 0.0f;
|
|
P[2][0] = 0.0f;
|
|
P[2][1] = 0.0f;
|
|
P[2][2] = 0.25f*rotVarVec.y;
|
|
P[2][3] = 0.0f;
|
|
P[3][0] = 0.0f;
|
|
P[3][1] = 0.0f;
|
|
P[3][2] = 0.0f;
|
|
P[3][3] = 0.25f*rotVarVec.z;
|
|
|
|
}
|
|
}
|
|
|