Ardupilot2/ArduCopter/system.pde
2013-11-10 21:51:54 +09:00

606 lines
17 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*****************************************************************************
* The init_ardupilot function processes everything we need for an in - air restart
* We will determine later if we are actually on the ground and process a
* ground start in that case.
*
*****************************************************************************/
#if CLI_ENABLED == ENABLED
// Functions called from the top-level menu
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv);
// This is the help function
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("Commands:\n"
" logs\n"
" setup\n"
" test\n"
" reboot\n"
"\n"));
return(0);
}
// Command/function table for the top-level menu.
const struct Menu::command main_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"logs", process_logs},
{"setup", setup_mode},
{"test", test_mode},
{"reboot", reboot_board},
{"help", main_menu_help},
};
// Create the top-level menu object.
MENU(main_menu, THISFIRMWARE, main_menu_commands);
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv)
{
hal.scheduler->reboot(false);
return 0;
}
// the user wants the CLI. It never exits
static void run_cli(AP_HAL::UARTDriver *port)
{
cliSerial = port;
Menu::set_port(port);
port->set_blocking_writes(true);
// disable the mavlink delay callback
hal.scheduler->register_delay_callback(NULL, 5);
// disable main_loop failsafe
failsafe_disable();
// cut the engines
if(motors.armed()) {
motors.armed(false);
motors.output();
}
while (1) {
main_menu.run();
}
}
#endif // CLI_ENABLED
static void init_ardupilot()
{
if (!hal.gpio->usb_connected()) {
// USB is not connected, this means UART0 may be a Xbee, with
// its darned bricking problem. We can't write to it for at
// least one second after powering up. Simplest solution for
// now is to delay for 1 second. Something more elegant may be
// added later
delay(1000);
}
// Console serial port
//
// The console port buffers are defined to be sufficiently large to support
// the MAVLink protocol efficiently
//
#if HIL_MODE != HIL_MODE_DISABLED
// we need more memory for HIL, as we get a much higher packet rate
hal.uartA->begin(SERIAL0_BAUD, 256, 256);
#else
// use a bit less for non-HIL operation
hal.uartA->begin(SERIAL0_BAUD, 512, 128);
#endif
// GPS serial port.
//
#if GPS_PROTOCOL != GPS_PROTOCOL_IMU
// standard gps running. Note that we need a 256 byte buffer for some
// GPS types (eg. UBLOX)
hal.uartB->begin(38400, 256, 16);
#endif
cliSerial->printf_P(PSTR("\n\nInit " FIRMWARE_STRING
"\n\nFree RAM: %u\n"),
memcheck_available_memory());
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
/*
run the timer a bit slower on APM2 to reduce the interrupt load
on the CPU
*/
hal.scheduler->set_timer_speed(500);
#endif
//
// Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function)
//
report_version();
relay.init();
#if COPTER_LEDS == ENABLED
copter_leds_init();
#endif
// load parameters from EEPROM
load_parameters();
#if HIL_MODE != HIL_MODE_ATTITUDE
barometer.init();
#endif
// init the GCS
gcs0.init(hal.uartA);
// Register the mavlink service callback. This will run
// anytime there are more than 5ms remaining in a call to
// hal.scheduler->delay.
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5);
// we start by assuming USB connected, as we initialed the serial
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
ap.usb_connected = true;
check_usb_mux();
#if CONFIG_HAL_BOARD != HAL_BOARD_APM2
// we have a 2nd serial port for telemetry on all boards except
// APM2. We actually do have one on APM2 but it isn't necessary as
// a MUX is used
hal.uartC->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128);
gcs3.init(hal.uartC);
#endif
// identify ourselves correctly with the ground station
mavlink_system.sysid = g.sysid_this_mav;
mavlink_system.type = 2; //MAV_QUADROTOR;
#if LOGGING_ENABLED == ENABLED
DataFlash.Init();
if (!DataFlash.CardInserted()) {
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash inserted"));
g.log_bitmask.set(0);
} else if (DataFlash.NeedErase()) {
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS"));
do_erase_logs();
gcs0.reset_cli_timeout();
}
#endif
#if FRAME_CONFIG == HELI_FRAME
motors.servo_manual = false;
motors.init_swash(); // heli initialisation
#endif
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up motors and output to escs
/*
* setup the 'main loop is dead' check. Note that this relies on
* the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check, 1000);
#if HIL_MODE != HIL_MODE_ATTITUDE
#if CONFIG_ADC == ENABLED
// begin filtering the ADC Gyros
adc.Init(); // APM ADC library initialization
#endif // CONFIG_ADC
#endif // HIL_MODE
// Do GPS init
g_gps = &g_gps_driver;
// GPS Initialization
g_gps->init(hal.uartB, GPS::GPS_ENGINE_AIRBORNE_1G);
if(g.compass_enabled)
init_compass();
// init the optical flow sensor
if(g.optflow_enabled) {
init_optflow();
}
// initialise inertial nav
inertial_nav.init();
#ifdef USERHOOK_INIT
USERHOOK_INIT
#endif
#if CLI_ENABLED == ENABLED
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n");
cliSerial->println_P(msg);
if (gcs3.initialised) {
hal.uartC->println_P(msg);
}
#endif // CLI_ENABLED
#if HIL_MODE != HIL_MODE_DISABLED
while (!barometer.healthy) {
// the barometer becomes healthy when we get the first
// HIL_STATE message
gcs_send_text_P(SEVERITY_LOW, PSTR("Waiting for first HIL_STATE message"));
delay(1000);
}
#endif
#if HIL_MODE != HIL_MODE_ATTITUDE
// read Baro pressure at ground
//-----------------------------
init_barometer();
#endif
// initialise sonar
#if CONFIG_SONAR == ENABLED
init_sonar();
#endif
#if FRAME_CONFIG == HELI_FRAME
// initialise controller filters
init_rate_controllers();
#endif // HELI_FRAME
// initialize commands
// -------------------
init_commands();
// initialise the flight mode and aux switch
// ---------------------------
reset_control_switch();
init_aux_switches();
startup_ground(true);
#if LOGGING_ENABLED == ENABLED
Log_Write_Startup();
#endif
cliSerial->print_P(PSTR("\nReady to FLY "));
}
//******************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//******************************************************************************
static void startup_ground(bool force_gyro_cal)
{
gcs_send_text_P(SEVERITY_LOW,PSTR("GROUND START"));
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
ahrs.init();
// Warm up and read Gyro offsets
// -----------------------------
ins.init(force_gyro_cal?AP_InertialSensor::COLD_START:AP_InertialSensor::WARM_START,
ins_sample_rate);
#if CLI_ENABLED == ENABLED
report_ins();
#endif
// setup fast AHRS gains to get right attitude
ahrs.set_fast_gains(true);
// set landed flag
set_land_complete(true);
}
// returns true if the GPS is ok and home position is set
static bool GPS_ok()
{
if (g_gps != NULL && ap.home_is_set && g_gps->status() == GPS::GPS_OK_FIX_3D) {
return true;
}else{
return false;
}
}
// returns true or false whether mode requires GPS
static bool mode_requires_GPS(uint8_t mode) {
switch(mode) {
case AUTO:
case GUIDED:
case LOITER:
case RTL:
case CIRCLE:
case POSITION:
return true;
default:
return false;
}
return false;
}
// manual_flight_mode - returns true if flight mode is completely manual (i.e. roll, pitch and yaw controlled by pilot)
static bool manual_flight_mode(uint8_t mode) {
switch(mode) {
case ACRO:
case STABILIZE:
case TOY:
case SPORT:
return true;
default:
return false;
}
return false;
}
// set_mode - change flight mode and perform any necessary initialisation
// returns true if mode was succesfully set
// STABILIZE, ACRO, SPORT and LAND can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately
static bool set_mode(uint8_t mode)
{
// boolean to record if flight mode could be set
bool success = false;
bool ignore_checks = !motors.armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform
// return immediately if we are already in the desired mode
if (mode == control_mode) {
return true;
}
switch(mode) {
case ACRO:
success = true;
set_yaw_mode(ACRO_YAW);
set_roll_pitch_mode(ACRO_RP);
set_throttle_mode(ACRO_THR);
set_nav_mode(NAV_NONE);
break;
case STABILIZE:
success = true;
set_yaw_mode(YAW_HOLD);
set_roll_pitch_mode(ROLL_PITCH_STABLE);
set_throttle_mode(THROTTLE_MANUAL_TILT_COMPENSATED);
set_nav_mode(NAV_NONE);
break;
case ALT_HOLD:
success = true;
set_yaw_mode(ALT_HOLD_YAW);
set_roll_pitch_mode(ALT_HOLD_RP);
set_throttle_mode(ALT_HOLD_THR);
set_nav_mode(NAV_NONE);
break;
case AUTO:
// check we have a GPS and at least one mission command (note the home position is always command 0)
if ((GPS_ok() && g.command_total > 1) || ignore_checks) {
success = true;
// roll-pitch, throttle and yaw modes will all be set by the first nav command
init_commands(); // clear the command queues. will be reloaded when "run_autopilot" calls "update_commands" function
}
break;
case CIRCLE:
if (GPS_ok() || ignore_checks) {
success = true;
set_roll_pitch_mode(CIRCLE_RP);
set_throttle_mode(CIRCLE_THR);
set_nav_mode(CIRCLE_NAV);
set_yaw_mode(CIRCLE_YAW);
}
break;
case LOITER:
if (GPS_ok() || ignore_checks) {
success = true;
set_yaw_mode(LOITER_YAW);
set_roll_pitch_mode(LOITER_RP);
set_throttle_mode(LOITER_THR);
set_nav_mode(LOITER_NAV);
}
break;
case POSITION:
if (GPS_ok() || ignore_checks) {
success = true;
set_yaw_mode(POSITION_YAW);
set_roll_pitch_mode(POSITION_RP);
set_throttle_mode(POSITION_THR);
set_nav_mode(POSITION_NAV);
}
break;
case GUIDED:
if (GPS_ok() || ignore_checks) {
success = true;
set_yaw_mode(get_wp_yaw_mode(false));
set_roll_pitch_mode(GUIDED_RP);
set_throttle_mode(GUIDED_THR);
set_nav_mode(GUIDED_NAV);
}
break;
case LAND:
success = true;
do_land(NULL); // land at current location
break;
case RTL:
if (GPS_ok() || ignore_checks) {
success = true;
do_RTL();
}
break;
case OF_LOITER:
if (g.optflow_enabled || ignore_checks) {
success = true;
set_yaw_mode(OF_LOITER_YAW);
set_roll_pitch_mode(OF_LOITER_RP);
set_throttle_mode(OF_LOITER_THR);
set_nav_mode(OF_LOITER_NAV);
}
break;
case TOY:
success = true;
set_yaw_mode(YAW_TOY);
set_roll_pitch_mode(ROLL_PITCH_TOY);
set_nav_mode(NAV_NONE);
set_throttle_mode(THROTTLE_HOLD);
break;
case SPORT:
success = true;
set_yaw_mode(SPORT_YAW);
set_roll_pitch_mode(SPORT_RP);
set_throttle_mode(SPORT_THR);
set_nav_mode(NAV_NONE);
// reset acro angle targets to current attitude
acro_roll = ahrs.roll_sensor;
acro_pitch = ahrs.pitch_sensor;
nav_yaw = ahrs.yaw_sensor;
break;
default:
success = false;
break;
}
// update flight mode
if (success) {
control_mode = mode;
Log_Write_Mode(control_mode);
}else{
// Log error that we failed to enter desired flight mode
Log_Write_Error(ERROR_SUBSYSTEM_FLIGHT_MODE,mode);
}
// return success or failure
return success;
}
// update_auto_armed - update status of auto_armed flag
static void update_auto_armed()
{
// disarm checks
if(ap.auto_armed){
// if motors are disarmed, auto_armed should also be false
if(!motors.armed()) {
set_auto_armed(false);
return;
}
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false
if(manual_flight_mode(control_mode) && g.rc_3.control_in == 0 && !failsafe.radio) {
set_auto_armed(false);
}
}else{
// arm checks
// if motors are armed and throttle is above zero auto_armed should be true
if(motors.armed() && g.rc_3.control_in != 0) {
set_auto_armed(true);
}
}
}
/*
* map from a 8 bit EEPROM baud rate to a real baud rate
*/
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud)
{
switch (rate) {
case 1: return 1200;
case 2: return 2400;
case 4: return 4800;
case 9: return 9600;
case 19: return 19200;
case 38: return 38400;
case 57: return 57600;
case 111: return 111100;
case 115: return 115200;
}
//cliSerial->println_P(PSTR("Invalid SERIAL3_BAUD"));
return default_baud;
}
static void check_usb_mux(void)
{
bool usb_check = hal.gpio->usb_connected();
if (usb_check == ap.usb_connected) {
return;
}
// the user has switched to/from the telemetry port
ap.usb_connected = usb_check;
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
// the APM2 has a MUX setup where the first serial port switches
// between USB and a TTL serial connection. When on USB we use
// SERIAL0_BAUD, but when connected as a TTL serial port we run it
// at SERIAL3_BAUD.
if (ap.usb_connected) {
hal.uartA->begin(SERIAL0_BAUD);
} else {
hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
}
#endif
}
/*
* Read Vcc vs 1.1v internal reference
*/
uint16_t board_voltage(void)
{
return board_vcc_analog_source->voltage_latest() * 1000;
}
//
// print_flight_mode - prints flight mode to serial port.
//
static void
print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode)
{
switch (mode) {
case STABILIZE:
port->print_P(PSTR("STABILIZE"));
break;
case ACRO:
port->print_P(PSTR("ACRO"));
break;
case ALT_HOLD:
port->print_P(PSTR("ALT_HOLD"));
break;
case AUTO:
port->print_P(PSTR("AUTO"));
break;
case GUIDED:
port->print_P(PSTR("GUIDED"));
break;
case LOITER:
port->print_P(PSTR("LOITER"));
break;
case RTL:
port->print_P(PSTR("RTL"));
break;
case CIRCLE:
port->print_P(PSTR("CIRCLE"));
break;
case POSITION:
port->print_P(PSTR("POSITION"));
break;
case LAND:
port->print_P(PSTR("LAND"));
break;
case OF_LOITER:
port->print_P(PSTR("OF_LOITER"));
break;
case TOY:
port->print_P(PSTR("TOY"));
break;
case SPORT:
port->print_P(PSTR("SPORT"));
break;
default:
port->printf_P(PSTR("Mode(%u)"), (unsigned)mode);
break;
}
}