Ardupilot2/Tools/Replay/Replay.pde
2014-03-06 21:40:08 +11:00

516 lines
18 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_Common.h>
#include <AP_Progmem.h>
#include <AP_Param.h>
#include <AP_Math.h>
#include <AP_HAL.h>
#include <AP_HAL_AVR.h>
#include <AP_HAL_AVR_SITL.h>
#include <AP_HAL_Linux.h>
#include <AP_HAL_Empty.h>
#include <AP_ADC.h>
#include <AP_Declination.h>
#include <AP_ADC_AnalogSource.h>
#include <Filter.h>
#include <AP_Buffer.h>
#include <AP_Airspeed.h>
#include <AP_Vehicle.h>
#include <AP_Notify.h>
#include <DataFlash.h>
#include <GCS_MAVLink.h>
#include <AP_GPS.h>
#include <AP_GPS_Glitch.h>
#include <AP_AHRS.h>
#include <SITL.h>
#include <AP_Compass.h>
#include <AP_Baro.h>
#include <AP_InertialSensor.h>
#include <AP_InertialNav.h>
#include <AP_NavEKF.h>
#include <Parameters.h>
#include <stdio.h>
#include <getopt.h>
#include <errno.h>
#include "LogReader.h"
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
AP_Param param_loader(var_info, 4096);
static Parameters g;
static AP_InertialSensor_HIL ins;
static AP_Baro_HIL barometer;
static AP_GPS_HIL gps_driver;
static GPS *g_gps = &gps_driver;
static AP_Compass_HIL compass;
static AP_AHRS_NavEKF ahrs(ins, barometer, g_gps);
static GPS_Glitch gps_glitch(g_gps);
static AP_InertialNav inertial_nav(ahrs, barometer, g_gps, gps_glitch);
static AP_Vehicle::FixedWing aparm;
static AP_Airspeed airspeed(aparm);
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
SITL sitl;
#endif
static const NavEKF &NavEKF = ahrs.get_NavEKF();
static LogReader LogReader(ins, barometer, compass, g_gps, airspeed);
static FILE *plotf;
static FILE *plotf2;
static FILE *ekf1f;
static FILE *ekf2f;
static FILE *ekf3f;
static FILE *ekf4f;
static bool done_parameters;
static bool done_baro_init;
static bool done_home_init;
static uint16_t update_rate;
static uint8_t num_user_parameters;
static struct {
char name[17];
float value;
} user_parameters[100];
static void usage(void)
{
::printf("Options:\n");
::printf(" -rRATE set IMU rate in Hz\n");
::printf(" -pNAME=VALUE set parameter NAME to VALUE\n");
::printf(" -aMASK set accel mask (1=accel1 only, 2=accel2 only, 3=both)\n");
::printf(" -gMASK set gyro mask (1=gyro1 only, 2=gyro2 only, 3=both)\n");
}
void setup()
{
::printf("Starting\n");
const char *filename = "log.bin";
uint8_t argc;
char * const *argv;
int opt;
hal.util->commandline_arguments(argc, argv);
while ((opt = getopt(argc, argv, "r:p:ha:g:")) != -1) {
switch (opt) {
case 'h':
usage();
exit(0);
case 'r':
update_rate = strtol(optarg, NULL, 0);
break;
case 'g':
LogReader.set_gyro_mask(strtol(optarg, NULL, 0));
break;
case 'a':
LogReader.set_accel_mask(strtol(optarg, NULL, 0));
break;
case 'p':
char *eq = strchr(optarg, '=');
if (eq == NULL) {
::printf("Usage: -p NAME=VALUE\n");
exit(1);
}
*eq++ = 0;
strncpy(user_parameters[num_user_parameters].name, optarg, 16);
user_parameters[num_user_parameters].value = atof(eq);
num_user_parameters++;
if (num_user_parameters >= sizeof(user_parameters)/sizeof(user_parameters[0])) {
::printf("Too many user parameters\n");
exit(1);
}
break;
}
}
argv += optind;
argc -= optind;
if (argc > 0) {
filename = argv[0];
}
hal.console->printf("Processing log %s\n", filename);
if (update_rate != 0) {
hal.console->printf("Using an update rate of %u Hz\n", update_rate);
}
load_parameters();
if (!LogReader.open_log(filename)) {
perror(filename);
exit(1);
}
LogReader.wait_type(LOG_GPS_MSG);
LogReader.wait_type(LOG_IMU_MSG);
LogReader.wait_type(LOG_GPS_MSG);
LogReader.wait_type(LOG_IMU_MSG);
ahrs.set_compass(&compass);
ahrs.set_fly_forward(true);
ahrs.set_wind_estimation(true);
ahrs.set_correct_centrifugal(true);
barometer.init();
barometer.setHIL(0);
barometer.read();
compass.init();
inertial_nav.init();
switch (update_rate) {
case 0:
case 50:
ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_50HZ);
break;
case 100:
ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_100HZ);
break;
case 200:
ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_200HZ);
break;
case 400:
ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_400HZ);
break;
}
plotf = fopen("plot.dat", "w");
plotf2 = fopen("plot2.dat", "w");
ekf1f = fopen("EKF1.dat", "w");
ekf2f = fopen("EKF2.dat", "w");
ekf3f = fopen("EKF3.dat", "w");
ekf4f = fopen("EKF4.dat", "w");
fprintf(plotf, "time SIM.Roll SIM.Pitch SIM.Yaw BAR.Alt FLIGHT.Roll FLIGHT.Pitch FLIGHT.Yaw FLIGHT.dN FLIGHT.dE FLIGHT.Alt DCM.Roll DCM.Pitch DCM.Yaw EKF.Roll EKF.Pitch EKF.Yaw INAV.dN INAV.dE INAV.Alt EKF.dN EKF.dE EKF.Alt\n");
fprintf(plotf2, "time E1 E2 E3 VN VE VD PN PE PD GX GY GZ WN WE MN ME MD MX MY MZ E1ref E2ref E3ref\n");
fprintf(ekf1f, "timestamp TimeMS Roll Pitch Yaw VN VE VD PN PE PD GX GY GZ\n");
fprintf(ekf2f, "timestamp TimeMS AX AY AZ VWN VWE MN ME MD MX MY MZ\n");
fprintf(ekf3f, "timestamp TimeMS IVN IVE IVD IPN IPE IPD IMX IMY IMZ IVT\n");
fprintf(ekf4f, "timestamp TimeMS SVN SVE SVD SPN SPE SPD SMX SMY SMZ SVT\n");
ahrs.set_ekf_use(true);
::printf("Waiting for InertialNav to start\n");
while (!ahrs.have_inertial_nav()) {
uint8_t type;
if (!LogReader.update(type)) break;
read_sensors(type);
if (type == LOG_GPS_MSG && g_gps->status() >= GPS::GPS_OK_FIX_3D && done_baro_init && !done_home_init) {
::printf("GPS Lock at %.7f %.7f %.2fm time=%.1f seconds\n",
g_gps->latitude*1.0e-7f,
g_gps->longitude*1.0e-7f,
g_gps->altitude_cm*0.01f,
hal.scheduler->millis()*0.001f);
ahrs.set_home(g_gps->latitude, g_gps->longitude, g_gps->altitude_cm);
compass.set_initial_location(g_gps->latitude, g_gps->longitude);
inertial_nav.setup_home_position();
done_home_init = true;
}
}
::printf("InertialNav started\n");
if (!ahrs.have_inertial_nav()) {
::printf("Failed to start NavEKF\n");
exit(1);
}
}
/*
setup user -p parameters
*/
static void set_user_parameters(void)
{
for (uint8_t i=0; i<num_user_parameters; i++) {
if (!LogReader.set_parameter(user_parameters[i].name, user_parameters[i].value)) {
::printf("Failed to set parameter %s to %f\n", user_parameters[i].name, user_parameters[i].value);
exit(1);
}
}
}
static void read_sensors(uint8_t type)
{
if (!done_parameters && type != LOG_FORMAT_MSG && type != LOG_PARAMETER_MSG) {
done_parameters = true;
set_user_parameters();
}
if (type == LOG_GPS_MSG) {
g_gps->update();
if (g_gps->status() >= GPS::GPS_OK_FIX_3D) {
ahrs.estimate_wind();
}
} else if (type == LOG_IMU_MSG) {
uint32_t update_delta_usec = 1e6 / update_rate;
uint8_t update_count = update_rate>0?update_rate/50:1;
for (uint8_t i=0; i<update_count; i++) {
ahrs.update();
if (ahrs.get_home().lat != 0) {
inertial_nav.update(ins.get_delta_time());
}
hal.scheduler->stop_clock(hal.scheduler->micros() + (i+1)*update_delta_usec);
ins.set_gyro(0, ins.get_gyro());
ins.set_accel(0, ins.get_accel());
}
} else if ((type == LOG_PLANE_COMPASS_MSG && LogReader.vehicle == LogReader::VEHICLE_PLANE) ||
(type == LOG_COPTER_COMPASS_MSG && LogReader.vehicle == LogReader::VEHICLE_COPTER) ||
(type == LOG_ROVER_COMPASS_MSG && LogReader.vehicle == LogReader::VEHICLE_ROVER)) {
compass.read();
} else if (type == LOG_PLANE_AIRSPEED_MSG && LogReader.vehicle == LogReader::VEHICLE_PLANE) {
ahrs.set_airspeed(&airspeed);
} else if (type == LOG_BARO_MSG) {
barometer.read();
if (!done_baro_init) {
done_baro_init = true;
::printf("Barometer initialised\n");
barometer.update_calibration();
}
}
}
void loop()
{
while (true) {
uint8_t type;
if (!LogReader.update(type)) {
::printf("End of log at %.1f seconds\n", hal.scheduler->millis()*0.001f);
fclose(plotf);
exit(0);
}
read_sensors(type);
if ((type == LOG_PLANE_ATTITUDE_MSG && LogReader.vehicle == LogReader::VEHICLE_PLANE) ||
(type == LOG_COPTER_ATTITUDE_MSG && LogReader.vehicle == LogReader::VEHICLE_COPTER) ||
(type == LOG_ROVER_ATTITUDE_MSG && LogReader.vehicle == LogReader::VEHICLE_ROVER)) {
Vector3f ekf_euler;
Vector3f velNED;
Vector3f posNED;
Vector3f gyroBias;
Vector3f accelBias;
Vector3f windVel;
Vector3f magNED;
Vector3f magXYZ;
Vector3f DCM_attitude;
Vector3f ekf_relpos;
Vector3f velInnov;
Vector3f posInnov;
Vector3f magInnov;
float tasInnov;
Vector3f velVar;
Vector3f posVar;
Vector3f magVar;
float tasVar;
const Matrix3f &dcm_matrix = ((AP_AHRS_DCM)ahrs).get_dcm_matrix();
dcm_matrix.to_euler(&DCM_attitude.x, &DCM_attitude.y, &DCM_attitude.z);
NavEKF.getEulerAngles(ekf_euler);
NavEKF.getVelNED(velNED);
NavEKF.getPosNED(posNED);
NavEKF.getGyroBias(gyroBias);
NavEKF.getAccelBias(accelBias);
NavEKF.getWind(windVel);
NavEKF.getMagNED(magNED);
NavEKF.getMagXYZ(magXYZ);
NavEKF.getInnovations(velInnov, posInnov, magInnov, tasInnov);
NavEKF.getVariances(velVar, posVar, magVar, tasVar);
NavEKF.getPosNED(ekf_relpos);
Vector3f inav_pos = inertial_nav.get_position() * 0.01f;
float temp = degrees(ekf_euler.z);
if (temp < 0.0f) temp = temp + 360.0f;
fprintf(plotf, "%.3f %.1f %.1f %.1f %.2f %.1f %.1f %.1f %.2f %.2f %.2f %.1f %.1f %.1f %.1f %.1f %.1f %.2f %.2f %.2f %.2f %.2f %.2f\n",
hal.scheduler->millis() * 0.001f,
LogReader.get_sim_attitude().x,
LogReader.get_sim_attitude().y,
LogReader.get_sim_attitude().z,
barometer.get_altitude(),
LogReader.get_attitude().x,
LogReader.get_attitude().y,
LogReader.get_attitude().z,
LogReader.get_inavpos().x,
LogReader.get_inavpos().y,
LogReader.get_relalt(),
degrees(DCM_attitude.x),
degrees(DCM_attitude.y),
degrees(DCM_attitude.z),
degrees(ekf_euler.x),
degrees(ekf_euler.y),
degrees(ekf_euler.z),
inav_pos.x,
inav_pos.y,
inav_pos.z,
ekf_relpos.x,
ekf_relpos.y,
-ekf_relpos.z);
fprintf(plotf2, "%.3f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f\n",
hal.scheduler->millis() * 0.001f,
degrees(ekf_euler.x),
degrees(ekf_euler.y),
temp,
velNED.x,
velNED.y,
velNED.z,
posNED.x,
posNED.y,
posNED.z,
60*degrees(gyroBias.x),
60*degrees(gyroBias.y),
60*degrees(gyroBias.z),
windVel.x,
windVel.y,
magNED.x,
magNED.y,
magNED.z,
magXYZ.x,
magXYZ.y,
magXYZ.z,
LogReader.get_attitude().x,
LogReader.get_attitude().y,
LogReader.get_attitude().z);
// define messages for EKF1 data packet
int16_t roll = (int16_t)(100*degrees(ekf_euler.x)); // roll angle (centi-deg)
int16_t pitch = (int16_t)(100*degrees(ekf_euler.y)); // pitch angle (centi-deg)
uint16_t yaw = (uint16_t)wrap_360_cd(100*degrees(ekf_euler.z)); // yaw angle (centi-deg)
float velN = (float)(velNED.x); // velocity North (m/s)
float velE = (float)(velNED.y); // velocity East (m/s)
float velD = (float)(velNED.z); // velocity Down (m/s)
float posN = (float)(posNED.x); // metres North
float posE = (float)(posNED.y); // metres East
float posD = (float)(posNED.z); // metres Down
int16_t gyrX = (int16_t)(6000*degrees(gyroBias.x)); // centi-deg/min
int16_t gyrY = (int16_t)(6000*degrees(gyroBias.y)); // centi-deg/min
int16_t gyrZ = (int16_t)(6000*degrees(gyroBias.z)); // centi-deg/min
// print EKF1 data packet
fprintf(ekf1f, "%.3f %u %d %d %u %.2f %.2f %.2f %.2f %.2f %.2f %d %d %d\n",
hal.scheduler->millis() * 0.001f,
hal.scheduler->millis(),
roll,
pitch,
yaw,
velN,
velE,
velD,
posN,
posE,
posD,
gyrX,
gyrY,
gyrZ);
// define messages for EKF2 data packet
int8_t accX = (int8_t)(100*accelBias.x);
int8_t accY = (int8_t)(100*accelBias.y);
int8_t accZ = (int8_t)(100*accelBias.z);
int16_t windN = (int16_t)(100*windVel.x);
int16_t windE = (int16_t)(100*windVel.y);
int16_t magN = (int16_t)(magNED.x);
int16_t magE = (int16_t)(magNED.y);
int16_t magD = (int16_t)(magNED.z);
int16_t magX = (int16_t)(magXYZ.x);
int16_t magY = (int16_t)(magXYZ.y);
int16_t magZ = (int16_t)(magXYZ.z);
// print EKF2 data packet
fprintf(ekf2f, "%.3f %d %d %d %d %d %d %d %d %d %d %d %d\n",
hal.scheduler->millis() * 0.001f,
hal.scheduler->millis(),
accX,
accY,
accZ,
windN,
windE,
magN,
magE,
magD,
magX,
magY,
magZ);
// define messages for EKF3 data packet
int16_t innovVN = (int16_t)(100*velInnov.x);
int16_t innovVE = (int16_t)(100*velInnov.y);
int16_t innovVD = (int16_t)(100*velInnov.z);
int16_t innovPN = (int16_t)(100*posInnov.x);
int16_t innovPE = (int16_t)(100*posInnov.y);
int16_t innovPD = (int16_t)(100*posInnov.z);
int16_t innovMX = (int16_t)(magInnov.x);
int16_t innovMY = (int16_t)(magInnov.y);
int16_t innovMZ = (int16_t)(magInnov.z);
int16_t innovVT = (int16_t)(100*tasInnov);
// print EKF3 data packet
fprintf(ekf3f, "%.3f %d %d %d %d %d %d %d %d %d %d %d\n",
hal.scheduler->millis() * 0.001f,
hal.scheduler->millis(),
innovVN,
innovVE,
innovVD,
innovPN,
innovPE,
innovPD,
innovMX,
innovMY,
innovMZ,
innovVT);
// define messages for EKF4 data packet
int16_t sqrtvarVN = (int16_t)(100*sqrtf(velVar.x));
int16_t sqrtvarVE = (int16_t)(100*sqrtf(velVar.y));
int16_t sqrtvarVD = (int16_t)(100*sqrtf(velVar.z));
int16_t sqrtvarPN = (int16_t)(100*sqrtf(posVar.x));
int16_t sqrtvarPE = (int16_t)(100*sqrtf(posVar.y));
int16_t sqrtvarPD = (int16_t)(100*sqrtf(posVar.z));
int16_t sqrtvarMX = (int16_t)(sqrtf(magVar.x));
int16_t sqrtvarMY = (int16_t)(sqrtf(magVar.y));
int16_t sqrtvarMZ = (int16_t)(sqrtf(magVar.z));
int16_t sqrtvarVT = (int16_t)(100*sqrtf(tasVar));
// print EKF4 data packet
fprintf(ekf4f, "%.3f %d %d %d %d %d %d %d %d %d %d %d\n",
hal.scheduler->millis() * 0.001f,
hal.scheduler->millis(),
sqrtvarVN,
sqrtvarVE,
sqrtvarVD,
sqrtvarPN,
sqrtvarPE,
sqrtvarPD,
sqrtvarMX,
sqrtvarMY,
sqrtvarMZ,
sqrtvarVT);
}
}
}
AP_HAL_MAIN();