Ardupilot2/ArduCopter/ArduCopter.cpp
Andrew Tridgell 278883c521 Copter: finished conversion to .cpp files
Pair-Programmed-With: Randy Mackay <rmackay9@yahoo.com>
2015-05-30 15:21:19 +09:00

625 lines
19 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* ArduCopter Version 3.0
* Creator: Jason Short
* Lead Developer: Randy Mackay
* Lead Tester: Marco Robustini
* Based on code and ideas from the Arducopter team: Leonard Hall, Andrew Tridgell, Robert Lefebvre, Pat Hickey, Michael Oborne, Jani Hirvinen,
Olivier Adler, Kevin Hester, Arthur Benemann, Jonathan Challinger, John Arne Birkeland,
Jean-Louis Naudin, Mike Smith, and more
* Thanks to: Chris Anderson, Jordi Munoz, Jason Short, Doug Weibel, Jose Julio
*
* Special Thanks to contributors (in alphabetical order by first name):
*
* Adam M Rivera :Auto Compass Declination
* Amilcar Lucas :Camera mount library
* Andrew Tridgell :General development, Mavlink Support
* Angel Fernandez :Alpha testing
* AndreasAntonopoulous:GeoFence
* Arthur Benemann :DroidPlanner GCS
* Benjamin Pelletier :Libraries
* Bill King :Single Copter
* Christof Schmid :Alpha testing
* Craig Elder :Release Management, Support
* Dani Saez :V Octo Support
* Doug Weibel :DCM, Libraries, Control law advice
* Emile Castelnuovo :VRBrain port, bug fixes
* Gregory Fletcher :Camera mount orientation math
* Guntars :Arming safety suggestion
* HappyKillmore :Mavlink GCS
* Hein Hollander :Octo Support, Heli Testing
* Igor van Airde :Control Law optimization
* Jack Dunkle :Alpha testing
* James Goppert :Mavlink Support
* Jani Hiriven :Testing feedback
* Jean-Louis Naudin :Auto Landing
* John Arne Birkeland :PPM Encoder
* Jose Julio :Stabilization Control laws, MPU6k driver
* Julien Dubois :PosHold flight mode
* Julian Oes :Pixhawk
* Jonathan Challinger :Inertial Navigation, CompassMot, Spin-When-Armed
* Kevin Hester :Andropilot GCS
* Max Levine :Tri Support, Graphics
* Leonard Hall :Flight Dynamics, Throttle, Loiter and Navigation Controllers
* Marco Robustini :Lead tester
* Michael Oborne :Mission Planner GCS
* Mike Smith :Pixhawk driver, coding support
* Olivier Adler :PPM Encoder, piezo buzzer
* Pat Hickey :Hardware Abstraction Layer (HAL)
* Robert Lefebvre :Heli Support, Copter LEDs
* Roberto Navoni :Library testing, Porting to VRBrain
* Sandro Benigno :Camera support, MinimOSD
* Sandro Tognana :PosHold flight mode
* ..and many more.
*
* Code commit statistics can be found here: https://github.com/diydrones/ardupilot/graphs/contributors
* Wiki: http://copter.ardupilot.com/
* Requires modified version of Arduino, which can be found here: http://ardupilot.com/downloads/?category=6
*
*/
#include "Copter.h"
#define SCHED_TASK(func) FUNCTOR_BIND_VOID(&copter, &Copter::func, void)
/*
scheduler table for fast CPUs - all regular tasks apart from the fast_loop()
should be listed here, along with how often they should be called
(in 2.5ms units) and the maximum time they are expected to take (in
microseconds)
1 = 400hz
2 = 200hz
4 = 100hz
8 = 50hz
20 = 20hz
40 = 10hz
133 = 3hz
400 = 1hz
4000 = 0.1hz
*/
const AP_Scheduler::Task Copter::scheduler_tasks[] PROGMEM = {
{ SCHED_TASK(rc_loop), 4, 130 }, // 0
{ SCHED_TASK(throttle_loop), 8, 75 }, // 1
{ SCHED_TASK(update_GPS), 8, 200 }, // 2
#if OPTFLOW == ENABLED
{ SCHED_TASK(update_optical_flow), 2, 160 }, // 3
#endif
{ SCHED_TASK(update_batt_compass), 40, 120 }, // 4
{ SCHED_TASK(read_aux_switches), 40, 50 }, // 5
{ SCHED_TASK(arm_motors_check), 40, 50 }, // 6
{ SCHED_TASK(auto_trim), 40, 75 }, // 7
{ SCHED_TASK(update_altitude), 40, 140 }, // 8
{ SCHED_TASK(run_nav_updates), 8, 100 }, // 9
{ SCHED_TASK(update_thr_average), 4, 90 }, // 10
{ SCHED_TASK(three_hz_loop), 133, 75 }, // 11
{ SCHED_TASK(compass_accumulate), 8, 100 }, // 12
{ SCHED_TASK(barometer_accumulate), 8, 90 }, // 13
#if FRAME_CONFIG == HELI_FRAME
{ SCHED_TASK(check_dynamic_flight), 8, 75 },
#endif
{ SCHED_TASK(update_notify), 8, 90 }, // 14
{ SCHED_TASK(one_hz_loop), 400, 100 }, // 15
{ SCHED_TASK(ekf_check), 40, 75 }, // 16
{ SCHED_TASK(crash_check), 40, 75 }, // 17
{ SCHED_TASK(landinggear_update), 40, 75 }, // 18
{ SCHED_TASK(lost_vehicle_check), 40, 50 }, // 19
{ SCHED_TASK(gcs_check_input), 1, 180 }, // 20
{ SCHED_TASK(gcs_send_heartbeat), 400, 110 }, // 21
{ SCHED_TASK(gcs_send_deferred), 8, 550 }, // 22
{ SCHED_TASK(gcs_data_stream_send), 8, 550 }, // 23
{ SCHED_TASK(update_mount), 8, 75 }, // 24
{ SCHED_TASK(ten_hz_logging_loop), 40, 350 }, // 25
{ SCHED_TASK(fifty_hz_logging_loop), 8, 110 }, // 26
{ SCHED_TASK(full_rate_logging_loop),1, 100 }, // 27
{ SCHED_TASK(perf_update), 4000, 75 }, // 28
{ SCHED_TASK(read_receiver_rssi), 40, 75 }, // 29
#if FRSKY_TELEM_ENABLED == ENABLED
{ SCHED_TASK(frsky_telemetry_send), 80, 75 }, // 30
#endif
#if EPM_ENABLED == ENABLED
{ SCHED_TASK(epm_update), 40, 75 }, // 31
#endif
#ifdef USERHOOK_FASTLOOP
{ SCHED_TASK(userhook_FastLoop), 4, 75 },
#endif
#ifdef USERHOOK_50HZLOOP
{ SCHED_TASK(userhook_50Hz), 8, 75 },
#endif
#ifdef USERHOOK_MEDIUMLOOP
{ SCHED_TASK(userhook_MediumLoop), 40, 75 },
#endif
#ifdef USERHOOK_SLOWLOOP
{ SCHED_TASK(userhook_SlowLoop), 120, 75 },
#endif
#ifdef USERHOOK_SUPERSLOWLOOP
{ SCHED_TASK(userhook_SuperSlowLoop),400, 75 },
#endif
};
void Copter::setup()
{
cliSerial = hal.console;
// Load the default values of variables listed in var_info[]s
AP_Param::setup_sketch_defaults();
// setup storage layout for copter
StorageManager::set_layout_copter();
init_ardupilot();
// initialise the main loop scheduler
scheduler.init(&scheduler_tasks[0], sizeof(scheduler_tasks)/sizeof(scheduler_tasks[0]));
// setup initial performance counters
perf_info_reset();
fast_loopTimer = hal.scheduler->micros();
}
/*
if the compass is enabled then try to accumulate a reading
*/
void Copter::compass_accumulate(void)
{
if (g.compass_enabled) {
compass.accumulate();
}
}
/*
try to accumulate a baro reading
*/
void Copter::barometer_accumulate(void)
{
barometer.accumulate();
}
void Copter::perf_update(void)
{
if (should_log(MASK_LOG_PM))
Log_Write_Performance();
if (scheduler.debug()) {
gcs_send_text_fmt(PSTR("PERF: %u/%u %lu %lu\n"),
(unsigned)perf_info_get_num_long_running(),
(unsigned)perf_info_get_num_loops(),
(unsigned long)perf_info_get_max_time(),
(unsigned long)perf_info_get_min_time());
}
perf_info_reset();
pmTest1 = 0;
}
void Copter::loop()
{
// wait for an INS sample
ins.wait_for_sample();
uint32_t timer = micros();
// check loop time
perf_info_check_loop_time(timer - fast_loopTimer);
// used by PI Loops
G_Dt = (float)(timer - fast_loopTimer) / 1000000.0f;
fast_loopTimer = timer;
// for mainloop failure monitoring
mainLoop_count++;
// Execute the fast loop
// ---------------------
fast_loop();
// tell the scheduler one tick has passed
scheduler.tick();
// run all the tasks that are due to run. Note that we only
// have to call this once per loop, as the tasks are scheduled
// in multiples of the main loop tick. So if they don't run on
// the first call to the scheduler they won't run on a later
// call until scheduler.tick() is called again
uint32_t time_available = (timer + MAIN_LOOP_MICROS) - micros();
scheduler.run(time_available);
}
// Main loop - 400hz
void Copter::fast_loop()
{
// IMU DCM Algorithm
// --------------------
read_AHRS();
// run low level rate controllers that only require IMU data
attitude_control.rate_controller_run();
#if FRAME_CONFIG == HELI_FRAME
update_heli_control_dynamics();
#endif //HELI_FRAME
// send outputs to the motors library
motors_output();
// Inertial Nav
// --------------------
read_inertia();
// run the attitude controllers
update_flight_mode();
// update home from EKF if necessary
update_home_from_EKF();
// check if we've landed
update_land_detector();
}
// rc_loops - reads user input from transmitter/receiver
// called at 100hz
void Copter::rc_loop()
{
// Read radio and 3-position switch on radio
// -----------------------------------------
read_radio();
read_control_switch();
}
// throttle_loop - should be run at 50 hz
// ---------------------------
void Copter::throttle_loop()
{
// get altitude and climb rate from inertial lib
read_inertial_altitude();
// update throttle_low_comp value (controls priority of throttle vs attitude control)
update_throttle_thr_mix();
// check auto_armed status
update_auto_armed();
#if FRAME_CONFIG == HELI_FRAME
// update rotor speed
heli_update_rotor_speed_targets();
// update trad heli swash plate movement
heli_update_landing_swash();
#endif
}
// update_mount - update camera mount position
// should be run at 50hz
void Copter::update_mount()
{
#if MOUNT == ENABLED
// update camera mount's position
camera_mount.update();
#endif
#if CAMERA == ENABLED
camera.trigger_pic_cleanup();
#endif
}
// update_batt_compass - read battery and compass
// should be called at 10hz
void Copter::update_batt_compass(void)
{
// read battery before compass because it may be used for motor interference compensation
read_battery();
if(g.compass_enabled) {
// update compass with throttle value - used for compassmot
compass.set_throttle(motors.get_throttle()/1000.0f);
compass.read();
// log compass information
if (should_log(MASK_LOG_COMPASS)) {
DataFlash.Log_Write_Compass(compass);
}
}
}
// ten_hz_logging_loop
// should be run at 10hz
void Copter::ten_hz_logging_loop()
{
// log attitude data if we're not already logging at the higher rate
if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_Attitude();
Log_Write_Rate();
if (should_log(MASK_LOG_PID)) {
DataFlash.Log_Write_PID(LOG_PIDR_MSG, g.pid_rate_roll.get_pid_info() );
DataFlash.Log_Write_PID(LOG_PIDP_MSG, g.pid_rate_pitch.get_pid_info() );
DataFlash.Log_Write_PID(LOG_PIDY_MSG, g.pid_rate_yaw.get_pid_info() );
DataFlash.Log_Write_PID(LOG_PIDA_MSG, g.pid_accel_z.get_pid_info() );
}
}
if (should_log(MASK_LOG_MOTBATT)) {
Log_Write_MotBatt();
}
if (should_log(MASK_LOG_RCIN)) {
DataFlash.Log_Write_RCIN();
}
if (should_log(MASK_LOG_RCOUT)) {
DataFlash.Log_Write_RCOUT();
}
if (should_log(MASK_LOG_NTUN) && (mode_requires_GPS(control_mode) || landing_with_GPS())) {
Log_Write_Nav_Tuning();
}
}
// fifty_hz_logging_loop
// should be run at 50hz
void Copter::fifty_hz_logging_loop()
{
#if HIL_MODE != HIL_MODE_DISABLED
// HIL for a copter needs very fast update of the servo values
gcs_send_message(MSG_RADIO_OUT);
#endif
#if HIL_MODE == HIL_MODE_DISABLED
if (should_log(MASK_LOG_ATTITUDE_FAST)) {
Log_Write_Attitude();
Log_Write_Rate();
if (should_log(MASK_LOG_PID)) {
DataFlash.Log_Write_PID(LOG_PIDR_MSG, g.pid_rate_roll.get_pid_info() );
DataFlash.Log_Write_PID(LOG_PIDP_MSG, g.pid_rate_pitch.get_pid_info() );
DataFlash.Log_Write_PID(LOG_PIDY_MSG, g.pid_rate_yaw.get_pid_info() );
DataFlash.Log_Write_PID(LOG_PIDA_MSG, g.pid_accel_z.get_pid_info() );
}
}
// log IMU data if we're not already logging at the higher rate
if (should_log(MASK_LOG_IMU) && !should_log(MASK_LOG_IMU_FAST)) {
DataFlash.Log_Write_IMU(ins);
}
#endif
}
// full_rate_logging_loop
// should be run at the MAIN_LOOP_RATE
void Copter::full_rate_logging_loop()
{
if (should_log(MASK_LOG_IMU_FAST)) {
DataFlash.Log_Write_IMU(ins);
}
}
// three_hz_loop - 3.3hz loop
void Copter::three_hz_loop()
{
// check if we've lost contact with the ground station
failsafe_gcs_check();
#if AC_FENCE == ENABLED
// check if we have breached a fence
fence_check();
#endif // AC_FENCE_ENABLED
#if SPRAYER == ENABLED
sprayer.update();
#endif
update_events();
// update ch6 in flight tuning
tuning();
}
// one_hz_loop - runs at 1Hz
void Copter::one_hz_loop()
{
if (should_log(MASK_LOG_ANY)) {
Log_Write_Data(DATA_AP_STATE, ap.value);
}
// perform pre-arm checks & display failures every 30 seconds
static uint8_t pre_arm_display_counter = 15;
pre_arm_display_counter++;
if (pre_arm_display_counter >= 30) {
pre_arm_checks(true);
pre_arm_display_counter = 0;
}else{
pre_arm_checks(false);
}
// auto disarm checks
auto_disarm_check();
if (!motors.armed()) {
// make it possible to change ahrs orientation at runtime during initial config
ahrs.set_orientation();
// check the user hasn't updated the frame orientation
motors.set_frame_orientation(g.frame_orientation);
// set all throttle channel settings
motors.set_throttle_range(g.throttle_min, channel_throttle->radio_min, channel_throttle->radio_max);
}
// update assigned functions and enable auxiliar servos
RC_Channel_aux::enable_aux_servos();
check_usb_mux();
#if AP_TERRAIN_AVAILABLE
terrain.update();
// tell the rangefinder our height, so it can go into power saving
// mode if available
#if CONFIG_SONAR == ENABLED
float height;
if (terrain.height_above_terrain(height, true)) {
sonar.set_estimated_terrain_height(height);
}
#endif
#endif
// update position controller alt limits
update_poscon_alt_max();
// enable/disable raw gyro/accel logging
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
}
// called at 50hz
void Copter::update_GPS(void)
{
static uint32_t last_gps_reading[GPS_MAX_INSTANCES]; // time of last gps message
bool gps_updated = false;
gps.update();
// log after every gps message
for (uint8_t i=0; i<gps.num_sensors(); i++) {
if (gps.last_message_time_ms(i) != last_gps_reading[i]) {
last_gps_reading[i] = gps.last_message_time_ms(i);
// log GPS message
if (should_log(MASK_LOG_GPS)) {
DataFlash.Log_Write_GPS(gps, i, current_loc.alt);
}
gps_updated = true;
}
}
if (gps_updated) {
// set system time if necessary
set_system_time_from_GPS();
// checks to initialise home and take location based pictures
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
#if CAMERA == ENABLED
if (camera.update_location(current_loc) == true) {
do_take_picture();
}
#endif
}
}
}
void Copter::init_simple_bearing()
{
// capture current cos_yaw and sin_yaw values
simple_cos_yaw = ahrs.cos_yaw();
simple_sin_yaw = ahrs.sin_yaw();
// initialise super simple heading (i.e. heading towards home) to be 180 deg from simple mode heading
super_simple_last_bearing = wrap_360_cd(ahrs.yaw_sensor+18000);
super_simple_cos_yaw = simple_cos_yaw;
super_simple_sin_yaw = simple_sin_yaw;
// log the simple bearing to dataflash
if (should_log(MASK_LOG_ANY)) {
Log_Write_Data(DATA_INIT_SIMPLE_BEARING, ahrs.yaw_sensor);
}
}
// update_simple_mode - rotates pilot input if we are in simple mode
void Copter::update_simple_mode(void)
{
float rollx, pitchx;
// exit immediately if no new radio frame or not in simple mode
if (ap.simple_mode == 0 || !ap.new_radio_frame) {
return;
}
// mark radio frame as consumed
ap.new_radio_frame = false;
if (ap.simple_mode == 1) {
// rotate roll, pitch input by -initial simple heading (i.e. north facing)
rollx = channel_roll->control_in*simple_cos_yaw - channel_pitch->control_in*simple_sin_yaw;
pitchx = channel_roll->control_in*simple_sin_yaw + channel_pitch->control_in*simple_cos_yaw;
}else{
// rotate roll, pitch input by -super simple heading (reverse of heading to home)
rollx = channel_roll->control_in*super_simple_cos_yaw - channel_pitch->control_in*super_simple_sin_yaw;
pitchx = channel_roll->control_in*super_simple_sin_yaw + channel_pitch->control_in*super_simple_cos_yaw;
}
// rotate roll, pitch input from north facing to vehicle's perspective
channel_roll->control_in = rollx*ahrs.cos_yaw() + pitchx*ahrs.sin_yaw();
channel_pitch->control_in = -rollx*ahrs.sin_yaw() + pitchx*ahrs.cos_yaw();
}
// update_super_simple_bearing - adjusts simple bearing based on location
// should be called after home_bearing has been updated
void Copter::update_super_simple_bearing(bool force_update)
{
// check if we are in super simple mode and at least 10m from home
if(force_update || (ap.simple_mode == 2 && home_distance > SUPER_SIMPLE_RADIUS)) {
// check the bearing to home has changed by at least 5 degrees
if (labs(super_simple_last_bearing - home_bearing) > 500) {
super_simple_last_bearing = home_bearing;
float angle_rad = radians((super_simple_last_bearing+18000)/100);
super_simple_cos_yaw = cosf(angle_rad);
super_simple_sin_yaw = sinf(angle_rad);
}
}
}
void Copter::read_AHRS(void)
{
// Perform IMU calculations and get attitude info
//-----------------------------------------------
#if HIL_MODE != HIL_MODE_DISABLED
// update hil before ahrs update
gcs_check_input();
#endif
ahrs.update();
}
// read baro and sonar altitude at 10hz
void Copter::update_altitude()
{
// read in baro altitude
read_barometer();
// read in sonar altitude
sonar_alt = read_sonar();
// write altitude info to dataflash logs
if (should_log(MASK_LOG_CTUN)) {
Log_Write_Control_Tuning();
}
}
/*
compatibility with old pde style build
*/
void setup(void);
void loop(void);
void setup(void)
{
copter.setup();
}
void loop(void)
{
copter.loop();
}
AP_HAL_MAIN();