04e8726d8a
Enables bias convergence check to pass within 30 seconds when vehicle is static.
362 lines
14 KiB
C++
362 lines
14 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
|
|
|
|
#include "AP_NavEKF2.h"
|
|
#include "AP_NavEKF2_core.h"
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
#include <AP_Vehicle/AP_Vehicle.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
// Control filter mode transitions
|
|
void NavEKF2_core::controlFilterModes()
|
|
{
|
|
// Determine motor arm status
|
|
prevMotorsArmed = motorsArmed;
|
|
motorsArmed = hal.util->get_soft_armed();
|
|
if (motorsArmed && !prevMotorsArmed) {
|
|
// set the time at which we arm to assist with checks
|
|
timeAtArming_ms = imuSampleTime_ms;
|
|
}
|
|
|
|
// Detect if we are in flight on or ground
|
|
detectFlight();
|
|
|
|
// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to
|
|
// avoid unnecessary operations
|
|
setWindMagStateLearningMode();
|
|
|
|
// Check the alignmnent status of the tilt and yaw attitude
|
|
// Used during initial bootstrap alignment of the filter
|
|
checkAttitudeAlignmentStatus();
|
|
|
|
// Set the type of inertial navigation aiding used
|
|
setAidingMode();
|
|
|
|
}
|
|
|
|
/*
|
|
return effective value for _magCal for this core
|
|
*/
|
|
uint8_t NavEKF2_core::effective_magCal(void) const
|
|
{
|
|
// if we are on the 2nd core and _magCal is 3 then treat it as
|
|
// 2. This is a workaround for a mag fusion problem
|
|
if (frontend->_magCal ==3 && imu_index == 1) {
|
|
return 2;
|
|
}
|
|
return frontend->_magCal;
|
|
}
|
|
|
|
// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to
|
|
// avoid unnecessary operations
|
|
void NavEKF2_core::setWindMagStateLearningMode()
|
|
{
|
|
// If we are on ground, or in constant position mode, or don't have the right vehicle and sensing to estimate wind, inhibit wind states
|
|
bool setWindInhibit = (!useAirspeed() && !assume_zero_sideslip()) || onGround || (PV_AidingMode == AID_NONE);
|
|
if (!inhibitWindStates && setWindInhibit) {
|
|
inhibitWindStates = true;
|
|
} else if (inhibitWindStates && !setWindInhibit) {
|
|
inhibitWindStates = false;
|
|
// set states and variances
|
|
if (yawAlignComplete && useAirspeed()) {
|
|
// if we have airspeed and a valid heading, set the wind states to the reciprocal of the vehicle heading
|
|
// which assumes the vehicle has launched into the wind
|
|
Vector3f tempEuler;
|
|
stateStruct.quat.to_euler(tempEuler.x, tempEuler.y, tempEuler.z);
|
|
float windSpeed = sqrtf(sq(stateStruct.velocity.x) + sq(stateStruct.velocity.y)) - tasDataDelayed.tas;
|
|
stateStruct.wind_vel.x = windSpeed * cosf(tempEuler.z);
|
|
stateStruct.wind_vel.y = windSpeed * sinf(tempEuler.z);
|
|
|
|
// set the wind sate variances to the measurement uncertainty
|
|
for (uint8_t index=22; index<=23; index++) {
|
|
P[index][index] = sq(constrain_float(frontend->_easNoise, 0.5f, 5.0f) * constrain_float(_ahrs->get_EAS2TAS(), 0.9f, 10.0f));
|
|
}
|
|
} else {
|
|
// set the variances using a typical wind speed
|
|
for (uint8_t index=22; index<=23; index++) {
|
|
P[index][index] = sq(5.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
// determine if the vehicle is manoevring
|
|
if (accNavMagHoriz > 0.5f) {
|
|
manoeuvring = true;
|
|
} else {
|
|
manoeuvring = false;
|
|
}
|
|
|
|
// Determine if learning of magnetic field states has been requested by the user
|
|
uint8_t magCal = effective_magCal();
|
|
bool magCalRequested =
|
|
((magCal == 0) && inFlight) || // when flying
|
|
((magCal == 1) && manoeuvring) || // when manoeuvring
|
|
((magCal == 3) && finalInflightYawInit && finalInflightMagInit) || // when initial in-air yaw and mag field reset is complete
|
|
(magCal == 4); // all the time
|
|
|
|
// Deny mag calibration request if we aren't using the compass, it has been inhibited by the user,
|
|
// we do not have an absolute position reference or are on the ground (unless explicitly requested by the user)
|
|
bool magCalDenied = !use_compass() || (magCal == 2) || (onGround && magCal != 4);
|
|
|
|
// Inhibit the magnetic field calibration if not requested or denied
|
|
bool setMagInhibit = !magCalRequested || magCalDenied;
|
|
if (!inhibitMagStates && setMagInhibit) {
|
|
inhibitMagStates = true;
|
|
} else if (inhibitMagStates && !setMagInhibit) {
|
|
inhibitMagStates = false;
|
|
if (magFieldLearned) {
|
|
// if we have already learned the field states, then retain the learned variances
|
|
P[16][16] = earthMagFieldVar.x;
|
|
P[17][17] = earthMagFieldVar.y;
|
|
P[18][18] = earthMagFieldVar.z;
|
|
P[19][19] = bodyMagFieldVar.x;
|
|
P[20][20] = bodyMagFieldVar.y;
|
|
P[21][21] = bodyMagFieldVar.z;
|
|
} else {
|
|
// set the variances equal to the observation variances
|
|
for (uint8_t index=18; index<=21; index++) {
|
|
P[index][index] = sq(frontend->_magNoise);
|
|
}
|
|
|
|
// set the NE earth magnetic field states using the published declination
|
|
// and set the corresponding variances and covariances
|
|
alignMagStateDeclination();
|
|
|
|
}
|
|
// request a reset of the yaw and magnetic field states if not done before
|
|
if (!magStateInitComplete || (!finalInflightMagInit && inFlight)) {
|
|
magYawResetRequest = true;
|
|
}
|
|
}
|
|
|
|
// If on ground we clear the flag indicating that the magnetic field in-flight initialisation has been completed
|
|
// because we want it re-done for each takeoff
|
|
if (onGround) {
|
|
finalInflightYawInit = false;
|
|
finalInflightMagInit = false;
|
|
}
|
|
|
|
// Adjust the indexing limits used to address the covariance, states and other EKF arrays to avoid unnecessary operations
|
|
// if we are not using those states
|
|
if (inhibitMagStates && inhibitWindStates) {
|
|
stateIndexLim = 15;
|
|
} else if (inhibitWindStates) {
|
|
stateIndexLim = 21;
|
|
} else {
|
|
stateIndexLim = 23;
|
|
}
|
|
}
|
|
|
|
// Set inertial navigation aiding mode
|
|
void NavEKF2_core::setAidingMode()
|
|
{
|
|
// Determine when to commence aiding for inertial navigation
|
|
// Save the previous status so we can detect when it has changed
|
|
prevIsAiding = isAiding;
|
|
// perform aiding checks if not aiding
|
|
if (!isAiding) {
|
|
// Don't allow filter to start position or velocity aiding until the tilt and yaw alignment is complete
|
|
// and IMU gyro bias estimates have stabilised
|
|
bool filterIsStable = tiltAlignComplete && yawAlignComplete && checkGyroCalStatus();
|
|
// If GPS usage has been prohiited then we use flow aiding provided optical flow data is present
|
|
bool useFlowAiding = (frontend->_fusionModeGPS == 3) && optFlowDataPresent();
|
|
// Start aiding if we have a source of aiding data and the filter attitude algnment is complete
|
|
// Latch to on
|
|
isAiding = (readyToUseGPS() || useFlowAiding) && filterIsStable;
|
|
}
|
|
|
|
// check to see if we are starting or stopping aiding and set states and modes as required
|
|
if (isAiding != prevIsAiding) {
|
|
// We have transitioned either into or out of aiding
|
|
// zero stored velocities used to do dead-reckoning
|
|
heldVelNE.zero();
|
|
// set various usage modes based on the condition when we start aiding. These are then held until aiding is stopped.
|
|
if (!isAiding) {
|
|
// We have ceased aiding
|
|
// When not aiding, estimate orientation & height fusing synthetic constant position and zero velocity measurement to constrain tilt errors
|
|
PV_AidingMode = AID_NONE;
|
|
posTimeout = true;
|
|
velTimeout = true;
|
|
// store the current position to be used to keep reporting the last known position
|
|
lastKnownPositionNE.x = stateStruct.position.x;
|
|
lastKnownPositionNE.y = stateStruct.position.y;
|
|
// initialise filtered altitude used to provide a takeoff reference to current baro on disarm
|
|
// this reduces the time required for the baro noise filter to settle before the filtered baro data can be used
|
|
meaHgtAtTakeOff = baroDataDelayed.hgt;
|
|
// reset the vertical position state to faster recover from baro errors experienced during touchdown
|
|
stateStruct.position.z = -meaHgtAtTakeOff;
|
|
} else if (frontend->_fusionModeGPS == 3) {
|
|
// We have commenced aiding, but GPS usage has been prohibited so use optical flow only
|
|
hal.console->printf("EKF2 IMU%u is using optical flow\n",(unsigned)imu_index);
|
|
PV_AidingMode = AID_RELATIVE; // we have optical flow data and can estimate all vehicle states
|
|
posTimeout = true;
|
|
velTimeout = true;
|
|
// Reset the last valid flow measurement time
|
|
flowValidMeaTime_ms = imuSampleTime_ms;
|
|
// Reset the last valid flow fusion time
|
|
prevFlowFuseTime_ms = imuSampleTime_ms;
|
|
} else {
|
|
// We have commenced aiding and GPS usage is allowed
|
|
hal.console->printf("EKF2 IMU%u is using GPS\n",(unsigned)imu_index);
|
|
PV_AidingMode = AID_ABSOLUTE; // we have GPS data and can estimate all vehicle states
|
|
posTimeout = false;
|
|
velTimeout = false;
|
|
// we need to reset the GPS timers to prevent GPS timeout logic being invoked on entry into GPS aiding
|
|
// this is because the EKF can be interrupted for an arbitrary amount of time during vehicle arming checks
|
|
lastTimeGpsReceived_ms = imuSampleTime_ms;
|
|
secondLastGpsTime_ms = imuSampleTime_ms;
|
|
// reset the last valid position fix time to prevent unwanted activation of GPS glitch logic
|
|
lastPosPassTime_ms = imuSampleTime_ms;
|
|
}
|
|
// Reset the position and velocity
|
|
ResetVelocity();
|
|
ResetPosition();
|
|
|
|
}
|
|
|
|
// Always turn aiding off when the vehicle is disarmed
|
|
if (!isAiding) {
|
|
PV_AidingMode = AID_NONE;
|
|
posTimeout = true;
|
|
velTimeout = true;
|
|
}
|
|
}
|
|
|
|
// Check the tilt and yaw alignmnent status
|
|
// Used during initial bootstrap alignment of the filter
|
|
void NavEKF2_core::checkAttitudeAlignmentStatus()
|
|
{
|
|
// Check for tilt convergence - used during initial alignment
|
|
float alpha = 1.0f*imuDataDelayed.delAngDT;
|
|
float temp=tiltErrVec.length();
|
|
tiltErrFilt = alpha*temp + (1.0f-alpha)*tiltErrFilt;
|
|
if (tiltErrFilt < 0.005f && !tiltAlignComplete) {
|
|
tiltAlignComplete = true;
|
|
hal.console->printf("EKF2 IMU%u tilt alignment complete\n",(unsigned)imu_index);
|
|
}
|
|
|
|
// submit yaw and magnetic field reset requests depending on whether we have compass data
|
|
if (tiltAlignComplete && !yawAlignComplete) {
|
|
if (use_compass()) {
|
|
magYawResetRequest = true;
|
|
gpsYawResetRequest = false;
|
|
} else {
|
|
magYawResetRequest = false;
|
|
gpsYawResetRequest = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// return true if we should use the airspeed sensor
|
|
bool NavEKF2_core::useAirspeed(void) const
|
|
{
|
|
return _ahrs->airspeed_sensor_enabled();
|
|
}
|
|
|
|
// return true if we should use the range finder sensor
|
|
bool NavEKF2_core::useRngFinder(void) const
|
|
{
|
|
// TO-DO add code to set this based in setting of optical flow use parameter and presence of sensor
|
|
return true;
|
|
}
|
|
|
|
// return true if optical flow data is available
|
|
bool NavEKF2_core::optFlowDataPresent(void) const
|
|
{
|
|
return (imuSampleTime_ms - flowMeaTime_ms < 200);
|
|
}
|
|
|
|
// return true if the filter to be ready to use gps
|
|
bool NavEKF2_core::readyToUseGPS(void) const
|
|
{
|
|
return validOrigin && tiltAlignComplete && yawAlignComplete && gpsGoodToAlign && (frontend->_fusionModeGPS != 3);
|
|
}
|
|
|
|
// return true if we should use the compass
|
|
bool NavEKF2_core::use_compass(void) const
|
|
{
|
|
return _ahrs->get_compass() && _ahrs->get_compass()->use_for_yaw(magSelectIndex) && !allMagSensorsFailed;
|
|
}
|
|
|
|
/*
|
|
should we assume zero sideslip?
|
|
*/
|
|
bool NavEKF2_core::assume_zero_sideslip(void) const
|
|
{
|
|
// we don't assume zero sideslip for ground vehicles as EKF could
|
|
// be quite sensitive to a rapid spin of the ground vehicle if
|
|
// traction is lost
|
|
return _ahrs->get_fly_forward() && _ahrs->get_vehicle_class() != AHRS_VEHICLE_GROUND;
|
|
}
|
|
|
|
// set the LLH location of the filters NED origin
|
|
bool NavEKF2_core::setOriginLLH(struct Location &loc)
|
|
{
|
|
if (isAiding) {
|
|
return false;
|
|
}
|
|
EKF_origin = loc;
|
|
validOrigin = true;
|
|
return true;
|
|
}
|
|
|
|
// Set the NED origin to be used until the next filter reset
|
|
void NavEKF2_core::setOrigin()
|
|
{
|
|
// assume origin at current GPS location (no averaging)
|
|
EKF_origin = _ahrs->get_gps().location();
|
|
// define Earth rotation vector in the NED navigation frame at the origin
|
|
calcEarthRateNED(earthRateNED, _ahrs->get_home().lat);
|
|
validOrigin = true;
|
|
hal.console->printf("EKF2 IMU%u Origin Set\n",(unsigned)imu_index);
|
|
}
|
|
|
|
// record a yaw reset event
|
|
void NavEKF2_core::recordYawReset()
|
|
{
|
|
yawAlignComplete = true;
|
|
if (inFlight) {
|
|
finalInflightYawInit = true;
|
|
}
|
|
}
|
|
|
|
// return true and set the class variable true if the delta angle bias has been learned
|
|
bool NavEKF2_core::checkGyroCalStatus(void)
|
|
{
|
|
// check delta angle bias variances
|
|
const float delAngBiasVarMax = sq(radians(0.15f * dtEkfAvg));
|
|
delAngBiasLearned = (P[9][9] <= delAngBiasVarMax) &&
|
|
(P[10][10] <= delAngBiasVarMax) &&
|
|
(P[11][11] <= delAngBiasVarMax);
|
|
return delAngBiasLearned;
|
|
}
|
|
|
|
// Commands the EKF to not use GPS.
|
|
// This command must be sent prior to arming
|
|
// This command is forgotten by the EKF each time the vehicle disarms
|
|
// Returns 0 if command rejected
|
|
// Returns 1 if attitude, vertical velocity and vertical position will be provided
|
|
// Returns 2 if attitude, 3D-velocity, vertical position and relative horizontal position will be provided
|
|
uint8_t NavEKF2_core::setInhibitGPS(void)
|
|
{
|
|
if(!isAiding) {
|
|
return 0;
|
|
}
|
|
if (optFlowDataPresent()) {
|
|
frontend->_fusionModeGPS = 3;
|
|
//#error writing to a tuning parameter
|
|
return 2;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
#endif // HAL_CPU_CLASS
|