Ardupilot2/ArduCopter/mode_loiter.cpp
2021-05-24 20:13:37 +10:00

195 lines
6.5 KiB
C++

#include "Copter.h"
#if MODE_LOITER_ENABLED == ENABLED
/*
* Init and run calls for loiter flight mode
*/
// loiter_init - initialise loiter controller
bool ModeLoiter::init(bool ignore_checks)
{
if (!copter.failsafe.radio) {
float target_roll, target_pitch;
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// convert pilot input to lean angles
get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max());
// process pilot's roll and pitch input
loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch);
} else {
// clear out pilot desired acceleration in case radio failsafe event occurs and we do not switch to RTL for some reason
loiter_nav->clear_pilot_desired_acceleration();
}
loiter_nav->init_target();
// initialise the vertical position controller
if (!pos_control->is_active_z()) {
pos_control->init_z_controller();
}
return true;
}
#if PRECISION_LANDING == ENABLED
bool ModeLoiter::do_precision_loiter()
{
if (!_precision_loiter_enabled) {
return false;
}
if (copter.ap.land_complete_maybe) {
return false; // don't move on the ground
}
// if the pilot *really* wants to move the vehicle, let them....
if (loiter_nav->get_pilot_desired_acceleration().length() > 50.0f) {
return false;
}
if (!copter.precland.target_acquired()) {
return false; // we don't have a good vector
}
return true;
}
void ModeLoiter::precision_loiter_xy()
{
loiter_nav->clear_pilot_desired_acceleration();
Vector2f target_pos, target_vel_rel;
if (!copter.precland.get_target_position_cm(target_pos)) {
target_pos.x = inertial_nav.get_position().x;
target_pos.y = inertial_nav.get_position().y;
}
if (!copter.precland.get_target_velocity_relative_cms(target_vel_rel)) {
target_vel_rel.x = -inertial_nav.get_velocity().x;
target_vel_rel.y = -inertial_nav.get_velocity().y;
}
pos_control->set_pos_target_xy_cm(target_pos.x, target_pos.y);
pos_control->override_vehicle_velocity_xy(-target_vel_rel);
}
#endif
// loiter_run - runs the loiter controller
// should be called at 100hz or more
void ModeLoiter::run()
{
float target_roll, target_pitch;
float target_yaw_rate = 0.0f;
float target_climb_rate = 0.0f;
// set vertical speed and acceleration limits
pos_control->set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
// process pilot inputs unless we are in radio failsafe
if (!copter.failsafe.radio) {
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// convert pilot input to lean angles
get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max());
// process pilot's roll and pitch input
loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch);
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
// get pilot desired climb rate
target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up);
} else {
// clear out pilot desired acceleration in case radio failsafe event occurs and we do not switch to RTL for some reason
loiter_nav->clear_pilot_desired_acceleration();
}
// relax loiter target if we might be landed
if (copter.ap.land_complete_maybe) {
loiter_nav->soften_for_landing();
}
// Loiter State Machine Determination
AltHoldModeState loiter_state = get_alt_hold_state(target_climb_rate);
// Loiter State Machine
switch (loiter_state) {
case AltHold_MotorStopped:
attitude_control->reset_rate_controller_I_terms();
attitude_control->set_yaw_target_to_current_heading();
pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero
loiter_nav->init_target();
attitude_control->input_thrust_vector_rate_heading(loiter_nav->get_thrust_vector(), target_yaw_rate);
break;
case AltHold_Takeoff:
// initiate take-off
if (!takeoff.running()) {
takeoff.start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
}
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
// set position controller targets adjusted for pilot input
takeoff.do_pilot_takeoff(target_climb_rate);
// run loiter controller
loiter_nav->update();
// call attitude controller
attitude_control->input_thrust_vector_rate_heading(loiter_nav->get_thrust_vector(), target_yaw_rate);
break;
case AltHold_Landed_Ground_Idle:
attitude_control->set_yaw_target_to_current_heading();
FALLTHROUGH;
case AltHold_Landed_Pre_Takeoff:
attitude_control->reset_rate_controller_I_terms_smoothly();
loiter_nav->init_target();
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0.0f, 0.0f, 0.0f);
pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero
break;
case AltHold_Flying:
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
#if PRECISION_LANDING == ENABLED
if (do_precision_loiter()) {
precision_loiter_xy();
}
#endif
// run loiter controller
loiter_nav->update();
// call attitude controller
attitude_control->input_thrust_vector_rate_heading(loiter_nav->get_thrust_vector(), target_yaw_rate);
// adjust climb rate using rangefinder
target_climb_rate = copter.surface_tracking.adjust_climb_rate(target_climb_rate);
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
pos_control->set_pos_target_z_from_climb_rate_cm(target_climb_rate, false);
break;
}
// run the vertical position controller and set output throttle
pos_control->update_z_controller();
}
uint32_t ModeLoiter::wp_distance() const
{
return loiter_nav->get_distance_to_target();
}
int32_t ModeLoiter::wp_bearing() const
{
return loiter_nav->get_bearing_to_target();
}
#endif