Ardupilot2/libraries/AP_RangeFinder/AP_RangeFinder_PX4_PWM.cpp
Gustavo Jose de Sousa 203fb48827 AP_RangeFinder: standardize inclusion of libaries headers
This commit changes the way libraries headers are included in source files:

 - If the header is in the same directory the source belongs to, so the
 notation '#include ""' is used with the path relative to the directory
 containing the source.

 - If the header is outside the directory containing the source, then we use
 the notation '#include <>' with the path relative to libraries folder.

Some of the advantages of such approach:

 - Only one search path for libraries headers.

 - OSs like Windows may have a better lookup time.
2015-08-19 20:43:08 +09:00

193 lines
6.0 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
#include "AP_RangeFinder_PX4_PWM.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <drivers/drv_pwm_input.h>
#include <drivers/drv_hrt.h>
#include <drivers/drv_sensor.h>
#include <uORB/topics/pwm_input.h>
#include <stdio.h>
#include <errno.h>
#include <math.h>
extern const AP_HAL::HAL& hal;
/*
The constructor also initialises the rangefinder. Note that this
constructor is not called until detect() returns true, so we
already know that we should setup the rangefinder
*/
AP_RangeFinder_PX4_PWM::AP_RangeFinder_PX4_PWM(RangeFinder &_ranger, uint8_t instance, RangeFinder::RangeFinder_State &_state) :
AP_RangeFinder_Backend(_ranger, instance, _state),
_last_timestamp(0),
_last_pulse_time_ms(0),
_disable_time_ms(0),
_good_sample_count(0),
_last_sample_distance_cm(0)
{
_fd = open(PWMIN0_DEVICE_PATH, O_RDONLY);
if (_fd == -1) {
hal.console->printf("Unable to open PX4 PWM rangefinder\n");
set_status(RangeFinder::RangeFinder_NotConnected);
return;
}
// keep a queue of 20 samples
if (ioctl(_fd, SENSORIOCSQUEUEDEPTH, 20) != 0) {
hal.console->printf("Failed to setup range finder queue\n");
set_status(RangeFinder::RangeFinder_NotConnected);
return;
}
// initialise to connected but no data
set_status(RangeFinder::RangeFinder_NoData);
}
/*
close the file descriptor
*/
AP_RangeFinder_PX4_PWM::~AP_RangeFinder_PX4_PWM()
{
if (_fd != -1) {
close(_fd);
}
set_status(RangeFinder::RangeFinder_NotConnected);
}
/*
see if the PX4 driver is available
*/
bool AP_RangeFinder_PX4_PWM::detect(RangeFinder &_ranger, uint8_t instance)
{
int fd = open(PWMIN0_DEVICE_PATH, O_RDONLY);
if (fd == -1) {
return false;
}
close(fd);
return true;
}
void AP_RangeFinder_PX4_PWM::update(void)
{
if (_fd == -1) {
set_status(RangeFinder::RangeFinder_NotConnected);
return;
}
struct pwm_input_s pwm;
float sum_cm = 0;
uint16_t count = 0;
const float scaling = ranger._scaling[state.instance];
uint32_t now = hal.scheduler->millis();
while (::read(_fd, &pwm, sizeof(pwm)) == sizeof(pwm)) {
// report the voltage as the pulse width, so we get the raw
// pulse widths in the log
state.voltage_mv = pwm.pulse_width;
_last_pulse_time_ms = now;
// setup for scaling in meters per millisecond
float distance_cm = pwm.pulse_width * 0.1f * scaling + ranger._offset[state.instance];
float distance_delta_cm = fabsf(distance_cm - _last_sample_distance_cm);
_last_sample_distance_cm = distance_cm;
if (distance_delta_cm > 100) {
// varying by more than 1m in a single sample, which means
// between 50 and 100m/s vertically - discard
_good_sample_count = 0;
continue;
}
if (_good_sample_count > 1) {
count++;
sum_cm += distance_cm;
_last_timestamp = pwm.timestamp;
} else {
_good_sample_count++;
}
}
// if we haven't received a pulse for 1 second then we may need to
// reset the timer
int8_t stop_pin = ranger._stop_pin[state.instance];
uint16_t settle_time_ms = (uint16_t)ranger._settle_time_ms[state.instance];
if (stop_pin != -1 && out_of_range()) {
// we are above the power saving range. Disable the sensor
hal.gpio->pinMode(stop_pin, HAL_GPIO_OUTPUT);
hal.gpio->write(stop_pin, false);
set_status(RangeFinder::RangeFinder_NoData);
state.distance_cm = 0;
state.voltage_mv = 0;
return;
}
// if we have not taken a reading in the last 0.2s set status to No Data
if (hal.scheduler->micros64() - _last_timestamp >= 200000) {
set_status(RangeFinder::RangeFinder_NoData);
}
/* if we haven't seen any pulses for 0.5s then the sensor is
probably dead. Try resetting it. Tests show the sensor takes
about 0.2s to boot, so 500ms offers some safety margin
*/
if (now - _last_pulse_time_ms > 500U && _disable_time_ms == 0) {
ioctl(_fd, SENSORIOCRESET, 0);
_last_pulse_time_ms = now;
// if a stop pin is configured then disable the sensor for the
// settle time
if (stop_pin != -1) {
hal.gpio->pinMode(stop_pin, HAL_GPIO_OUTPUT);
hal.gpio->write(stop_pin, false);
_disable_time_ms = now;
}
}
/* the user can configure a settle time. This controls how
long the sensor is disabled for using the stop pin when it is
reset. This is used both to make sure the sensor is properly
reset, and also to allow for power management by running a low
duty cycle when it has no signal
*/
if (stop_pin != -1 && _disable_time_ms != 0 &&
(now - _disable_time_ms > settle_time_ms)) {
hal.gpio->write(stop_pin, true);
_disable_time_ms = 0;
_last_pulse_time_ms = now;
}
if (count != 0) {
state.distance_cm = sum_cm / count;
// update range_valid state based on distance measured
update_status();
}
}
#endif // CONFIG_HAL_BOARD