Ardupilot2/ArduPlane/tailsitter.h

196 lines
5.4 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <AP_Param/AP_Param.h>
#include "transition.h"
#include <AP_Motors/AP_MotorsTailsitter.h>
class QuadPlane;
class AP_MotorsMulticopter;
class Tailsitter_Transition;
class Tailsitter
{
friend class QuadPlane;
friend class Plane;
public:
Tailsitter(QuadPlane& _quadplane, AP_MotorsMulticopter*& _motors);
bool enabled() const { return (enable > 0) && setup_complete;}
void setup();
// return true when flying a control surface only tailsitter
bool is_control_surface_tailsitter(void) const;
// return true when flying a tailsitter in VTOL
bool active(void);
// create outputs for tailsitters
void output(void);
// handle different tailsitter input types
void check_input(void);
// check if we have completed transition to fixed wing
bool transition_fw_complete(void);
// return true if we are a tailsitter in FW flight
bool is_in_fw_flight(void) const;
// check if we have completed transition to vtol
bool transition_vtol_complete(void) const;
// return true if transistion to VTOL flight
bool in_vtol_transition(uint32_t now = 0) const;
// account for control surface speed scaling in VTOL modes
void speed_scaling(void);
// return the transition_angle_vtol value
int8_t get_transition_angle_vtol() const;
// return true if pitch control should be relaxed
bool relax_pitch();
// tailsitter speed scaler
float last_spd_scaler = 1.0f; // used to slew rate limiting with TAILSITTER_GSCL_ATT_THR option
float log_spd_scaler; // for QTUN log
static const struct AP_Param::GroupInfo var_info[];
// bit 0 enables plane mode and bit 1 enables body-frame roll mode
enum input {
TAILSITTER_INPUT_PLANE = (1U<<0),
TAILSITTER_INPUT_BF_ROLL = (1U<<1)
};
enum gscl_mask {
TAILSITTER_GSCL_THROTTLE = (1U<<0),
TAILSITTER_GSCL_ATT_THR = (1U<<1),
TAILSITTER_GSCL_DISK_THEORY = (1U<<2),
TAILSITTER_GSCL_ALTITUDE = (1U<<3),
};
AP_Int8 enable;
AP_Int8 transition_angle_fw;
AP_Float transition_rate_fw;
AP_Int8 transition_angle_vtol;
AP_Float transition_rate_vtol;
AP_Float transition_throttle_vtol;
AP_Int8 input_type;
AP_Float vectored_forward_gain;
AP_Float vectored_hover_gain;
AP_Float vectored_hover_power;
AP_Float throttle_scale_max;
AP_Float gain_scaling_min;
AP_Float max_roll_angle;
AP_Int16 motor_mask;
AP_Float scaling_speed_min;
AP_Float scaling_speed_max;
AP_Int16 gain_scaling_mask;
AP_Float disk_loading;
AP_Float VTOL_roll_scale;
AP_Float VTOL_pitch_scale;
AP_Float VTOL_yaw_scale;
AP_Float disk_loading_min_outflow;
AP_MotorsTailsitter* tailsitter_motors;
private:
bool setup_complete;
// true when flying a tilt-vectored tailsitter
bool _is_vectored;
// true is outputs are configured
bool _have_elevator;
bool _have_aileron;
bool _have_rudder;
// refences for convenience
QuadPlane& quadplane;
AP_MotorsMulticopter*& motors;
// transition logic
Tailsitter_Transition* transition;
};
// Transition for tailsitters
class Tailsitter_Transition : public Transition
{
friend class Tailsitter;
public:
Tailsitter_Transition(QuadPlane& _quadplane, AP_MotorsMulticopter*& _motors, Tailsitter& _tailsitter):Transition(_quadplane, _motors), tailsitter(_tailsitter) {};
void update() override;
void VTOL_update() override;
void force_transistion_complete() override;
bool complete() const override { return transition_state == TRANSITION_DONE; }
// setup for the transition back to fixed wing
void restart() override;
uint8_t get_log_transision_state() const override { return static_cast<uint8_t>(transition_state); }
bool active() const override { return transition_state != TRANSITION_DONE; }
bool show_vtol_view() const override;
void set_FW_roll_pitch(int32_t& nav_pitch_cd, int32_t& nav_roll_cd, bool& allow_stick_mixing) override;
MAV_VTOL_STATE get_mav_vtol_state() const override;
bool set_VTOL_roll_pitch_limit(int32_t& nav_roll_cd, int32_t& nav_pitch_cd) override;
private:
enum {
TRANSITION_ANGLE_WAIT_FW,
TRANSITION_ANGLE_WAIT_VTOL,
TRANSITION_DONE
} transition_state;
// for transition to VTOL flight
uint32_t vtol_transition_start_ms;
float vtol_transition_initial_pitch;
// for rate limit of VTOL flight
uint32_t vtol_limit_start_ms;
float vtol_limit_initial_pitch;
// for rate limit of FW flight
uint32_t fw_limit_start_ms;
float fw_limit_initial_pitch;
// for transition to FW flight
uint32_t fw_transition_start_ms;
float fw_transition_initial_pitch;
// time when we were last in a vtol control mode
uint32_t last_vtol_mode_ms;
Tailsitter& tailsitter;
};