Ardupilot2/libraries/AP_Terrain/TerrainUtil.cpp
Andrew Tridgell db506b76fa AP_Terrain: split up code into separate cpp files
this should make it a bit easier to review
2014-07-24 21:50:19 +10:00

192 lines
6.0 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
handle disk IO for terrain code
*/
#include <AP_HAL.h>
#include <AP_Common.h>
#include <AP_Math.h>
#include <GCS_MAVLink.h>
#include <GCS.h>
#include "AP_Terrain.h"
#if HAVE_AP_TERRAIN
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
extern const AP_HAL::HAL& hal;
/*
calculate bit number in grid_block bitmap. This corresponds to a
bit representing a 4x4 mavlink transmitted block
*/
uint8_t AP_Terrain::grid_bitnum(uint8_t idx_x, uint8_t idx_y)
{
ASSERT_RANGE(idx_x,0,27);
ASSERT_RANGE(idx_y,0,31);
uint8_t subgrid_x = idx_x / TERRAIN_GRID_MAVLINK_SIZE;
uint8_t subgrid_y = idx_y / TERRAIN_GRID_MAVLINK_SIZE;
ASSERT_RANGE(subgrid_x,0,TERRAIN_GRID_BLOCK_MUL_X-1);
ASSERT_RANGE(subgrid_y,0,TERRAIN_GRID_BLOCK_MUL_Y-1);
return subgrid_y + TERRAIN_GRID_BLOCK_MUL_Y*subgrid_x;
}
/*
given a grid_info check that a given idx_x/idx_y is available (set
in the bitmap)
*/
bool AP_Terrain::check_bitmap(const struct grid_block &grid, uint8_t idx_x, uint8_t idx_y)
{
uint8_t bitnum = grid_bitnum(idx_x, idx_y);
return (grid.bitmap & (((uint64_t)1U)<<bitnum)) != 0;
}
/*
given a location, calculate the 32x28 grid SW corner, plus the
grid indices
*/
void AP_Terrain::calculate_grid_info(const Location &loc, struct grid_info &info) const
{
// grids start on integer degrees. This makes storing terrain data
// on the SD card a bit easier
info.lat_degrees = (loc.lat<0?(loc.lat-9999999L):loc.lat) / (10*1000*1000L);
info.lon_degrees = (loc.lng<0?(loc.lng-9999999L):loc.lng) / (10*1000*1000L);
// create reference position for this rounded degree position
Location ref;
ref.lat = info.lat_degrees*10*1000*1000L;
ref.lng = info.lon_degrees*10*1000*1000L;
// find offset from reference
Vector2f offset = location_diff(ref, loc);
// get indices in terms of grid_spacing elements
uint32_t idx_x = offset.x / grid_spacing;
uint32_t idx_y = offset.y / grid_spacing;
// find indexes into 32*28 grids for this degree reference. Note
// the use of TERRAIN_GRID_BLOCK_SPACING_{X,Y} which gives a one square
// overlap between grids
info.grid_idx_x = idx_x / TERRAIN_GRID_BLOCK_SPACING_X;
info.grid_idx_y = idx_y / TERRAIN_GRID_BLOCK_SPACING_Y;
// find the indices within the 32*28 grid
info.idx_x = idx_x % TERRAIN_GRID_BLOCK_SPACING_X;
info.idx_y = idx_y % TERRAIN_GRID_BLOCK_SPACING_Y;
// find the fraction (0..1) within the square
info.frac_x = (offset.x - idx_x * grid_spacing) / grid_spacing;
info.frac_y = (offset.y - idx_y * grid_spacing) / grid_spacing;
// calculate lat/lon of SW corner of 32*28 grid_block
location_offset(ref,
info.grid_idx_x * TERRAIN_GRID_BLOCK_SPACING_X * (float)grid_spacing,
info.grid_idx_y * TERRAIN_GRID_BLOCK_SPACING_Y * (float)grid_spacing);
info.grid_lat = ref.lat;
info.grid_lon = ref.lng;
ASSERT_RANGE(info.idx_x,0,TERRAIN_GRID_BLOCK_SPACING_X-1);
ASSERT_RANGE(info.idx_y,0,TERRAIN_GRID_BLOCK_SPACING_Y-1);
ASSERT_RANGE(info.frac_x,0,1);
ASSERT_RANGE(info.frac_y,0,1);
}
/*
find a grid structure given a grid_info
*/
AP_Terrain::grid_cache &AP_Terrain::find_grid(const struct grid_info &info)
{
uint16_t oldest_i = 0;
// see if we have that grid
for (uint16_t i=0; i<TERRAIN_GRID_BLOCK_CACHE_SIZE; i++) {
if (cache[i].grid.lat == info.grid_lat &&
cache[i].grid.lon == info.grid_lon &&
cache[i].grid.spacing == grid_spacing) {
cache[i].last_access_ms = hal.scheduler->millis();
return cache[i];
}
if (cache[i].last_access_ms < cache[oldest_i].last_access_ms) {
oldest_i = i;
}
}
// Not found. Use the oldest grid and make it this grid,
// initially unpopulated
struct grid_cache &grid = cache[oldest_i];
memset(&grid, 0, sizeof(grid));
grid.grid.lat = info.grid_lat;
grid.grid.lon = info.grid_lon;
grid.grid.spacing = grid_spacing;
grid.grid.grid_idx_x = info.grid_idx_x;
grid.grid.grid_idx_y = info.grid_idx_y;
grid.grid.lat_degrees = info.lat_degrees;
grid.grid.lon_degrees = info.lon_degrees;
grid.grid.version = TERRAIN_GRID_FORMAT_VERSION;
grid.last_access_ms = hal.scheduler->millis();
// mark as waiting for disk read
grid.state = GRID_CACHE_DISKWAIT;
return grid;
}
/*
find cache index of disk_block
*/
int16_t AP_Terrain::find_io_idx(enum GridCacheState state)
{
// try first with given state
for (uint16_t i=0; i<TERRAIN_GRID_BLOCK_CACHE_SIZE; i++) {
if (disk_block.block.lat == cache[i].grid.lat &&
disk_block.block.lon == cache[i].grid.lon &&
cache[i].state == state) {
return i;
}
}
// then any state
for (uint16_t i=0; i<TERRAIN_GRID_BLOCK_CACHE_SIZE; i++) {
if (disk_block.block.lat == cache[i].grid.lat &&
disk_block.block.lon == cache[i].grid.lon) {
return i;
}
}
return -1;
}
/*
get CRC for a block
*/
uint16_t AP_Terrain::get_block_crc(struct grid_block &block)
{
uint16_t saved_crc = block.crc;
block.crc = 0;
uint16_t ret = crc16_ccitt((const uint8_t *)&block, sizeof(block), 0);
block.crc = saved_crc;
return ret;
}
#endif // HAVE_AP_TERRAIN