Ardupilot2/libraries/AP_NavEKF3/AP_NavEKF3_MagFusion.cpp
Peter Barker da95985dd7 AP_NavEKF3: remove mag_state state
we don't need to persist this across multiple calls as we now fuse all axes on the one step.

I've moved the defintion of these variables to where they are initialised to make it clear they're not used uninitialised.
2023-01-25 19:58:54 +11:00

1645 lines
79 KiB
C++

#include <AP_HAL/AP_HAL.h>
#include "AP_NavEKF3.h"
#include "AP_NavEKF3_core.h"
#include <GCS_MAVLink/GCS.h>
#include <AP_DAL/AP_DAL.h>
/********************************************************
* RESET FUNCTIONS *
********************************************************/
// Control reset of yaw and magnetic field states
void NavEKF3_core::controlMagYawReset()
{
// Vehicles that can use a zero sideslip assumption (Planes) are a special case
// They can use the GPS velocity to recover from bad initial compass data
// This allows recovery for heading alignment errors due to compass faults
if (assume_zero_sideslip() && (!finalInflightYawInit || !yawAlignComplete) && inFlight) {
gpsYawResetRequest = true;
return;
} else {
gpsYawResetRequest = false;
}
// Quaternion and delta rotation vector that are re-used for different calculations
Vector3F deltaRotVecTemp;
QuaternionF deltaQuatTemp;
bool flightResetAllowed = false;
bool initialResetAllowed = false;
if (!finalInflightYawInit) {
// Use a quaternion division to calculate the delta quaternion between the rotation at the current and last time
deltaQuatTemp = stateStruct.quat / prevQuatMagReset;
prevQuatMagReset = stateStruct.quat;
// convert the quaternion to a rotation vector and find its length
deltaQuatTemp.to_axis_angle(deltaRotVecTemp);
// check if the spin rate is OK - high spin rates can cause angular alignment errors
bool angRateOK = deltaRotVecTemp.length() < 0.1745f;
initialResetAllowed = angRateOK && tiltAlignComplete;
flightResetAllowed = angRateOK && !onGround;
}
// reset the limit on the number of magnetic anomaly resets for each takeoff
if (onGround) {
magYawAnomallyCount = 0;
}
// Check if conditions for a interim or final yaw/mag reset are met
bool finalResetRequest = false;
bool interimResetRequest = false;
if (flightResetAllowed && !assume_zero_sideslip()) {
// check that we have reached a height where ground magnetic interference effects are insignificant
// and can perform a final reset of the yaw and field states
finalResetRequest = (stateStruct.position.z - posDownAtTakeoff) < -EKF3_MAG_FINAL_RESET_ALT;
// check for increasing height
bool hgtIncreasing = (posDownAtLastMagReset-stateStruct.position.z) > 0.5f;
ftype yawInnovIncrease = fabsF(innovYaw) - fabsF(yawInnovAtLastMagReset);
// check for increasing yaw innovations
bool yawInnovIncreasing = yawInnovIncrease > 0.25f;
// check that the yaw innovations haven't been caused by a large change in attitude
deltaQuatTemp = quatAtLastMagReset / stateStruct.quat;
deltaQuatTemp.to_axis_angle(deltaRotVecTemp);
bool largeAngleChange = deltaRotVecTemp.length() > yawInnovIncrease;
// if yaw innovations and height have increased and we haven't rotated much
// then we are climbing away from a ground based magnetic anomaly and need to reset
interimResetRequest = !finalInflightYawInit
&& !finalResetRequest
&& (magYawAnomallyCount < MAG_ANOMALY_RESET_MAX)
&& hgtIncreasing
&& yawInnovIncreasing
&& !largeAngleChange;
}
// an initial reset is required if we have not yet aligned the yaw angle
bool initialResetRequest = initialResetAllowed && !yawAlignComplete;
// a combined yaw angle and magnetic field reset can be initiated by:
magYawResetRequest = magYawResetRequest || // an external request
initialResetRequest || // an initial alignment performed by all vehicle types using magnetometer
interimResetRequest || // an interim alignment required to recover from ground based magnetic anomaly
finalResetRequest; // the final reset when we have achieved enough height to be in stable magnetic field environment
// Perform a reset of magnetic field states and reset yaw to corrected magnetic heading
if (magYawResetRequest && use_compass()) {
// send initial alignment status to console
if (!yawAlignComplete) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF3 IMU%u MAG%u initial yaw alignment complete",(unsigned)imu_index, (unsigned)magSelectIndex);
}
// set yaw from a single mag sample
setYawFromMag();
// send in-flight yaw alignment status to console
if (finalResetRequest) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF3 IMU%u MAG%u in-flight yaw alignment complete",(unsigned)imu_index, (unsigned)magSelectIndex);
} else if (interimResetRequest) {
magYawAnomallyCount++;
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "EKF3 IMU%u MAG%u ground mag anomaly, yaw re-aligned",(unsigned)imu_index, (unsigned)magSelectIndex);
}
// clear the complete flags if an interim reset has been performed to allow subsequent
// and final reset to occur
if (interimResetRequest) {
finalInflightYawInit = false;
finalInflightMagInit = false;
}
// mag states
if (!magFieldLearned) {
resetMagFieldStates();
}
}
if (magStateResetRequest) {
resetMagFieldStates();
}
}
// this function is used to do a forced re-alignment of the yaw angle to align with the horizontal velocity
// vector from GPS. It is used to align the yaw angle after launch or takeoff.
void NavEKF3_core::realignYawGPS()
{
// get quaternion from existing filter states and calculate roll, pitch and yaw angles
Vector3F eulerAngles;
stateStruct.quat.to_euler(eulerAngles.x, eulerAngles.y, eulerAngles.z);
if ((sq(gpsDataDelayed.vel.x) + sq(gpsDataDelayed.vel.y)) > 25.0f) {
// calculate course yaw angle
ftype velYaw = atan2F(stateStruct.velocity.y,stateStruct.velocity.x);
// calculate course yaw angle from GPS velocity
ftype gpsYaw = atan2F(gpsDataDelayed.vel.y,gpsDataDelayed.vel.x);
// Check the yaw angles for consistency
ftype yawErr = MAX(fabsF(wrap_PI(gpsYaw - velYaw)),fabsF(wrap_PI(gpsYaw - eulerAngles.z)));
// If the angles disagree by more than 45 degrees and GPS innovations are large or no previous yaw alignment, we declare the magnetic yaw as bad
bool badMagYaw = ((yawErr > 0.7854f) && (velTestRatio > 1.0f) && (PV_AidingMode == AID_ABSOLUTE)) || !yawAlignComplete;
// correct yaw angle using GPS ground course if compass yaw bad
if (badMagYaw) {
// attempt to use EKF-GSF estimate if available as it is more robust to GPS glitches
if (EKFGSF_resetMainFilterYaw(true)) {
return;
}
// keep roll and pitch and reset yaw
rotationOrder order;
bestRotationOrder(order);
resetQuatStateYawOnly(gpsYaw, sq(radians(45.0f)), order);
// reset the velocity and position states as they will be inaccurate due to bad yaw
ResetVelocity(resetDataSource::GPS);
ResetPosition(resetDataSource::GPS);
// send yaw alignment information to console
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF3 IMU%u yaw aligned to GPS velocity",(unsigned)imu_index);
if (use_compass()) {
// request a mag field reset which may enable us to use the magnetometer if the previous fault was due to bad initialisation
magStateResetRequest = true;
// clear the all sensors failed status so that the magnetometers sensors get a second chance now that we are flying
allMagSensorsFailed = false;
}
}
}
}
// align the yaw angle for the quaternion states to the given yaw angle which should be at the fusion horizon
void NavEKF3_core::alignYawAngle(const yaw_elements &yawAngData)
{
// update quaternion states and covariances
resetQuatStateYawOnly(yawAngData.yawAng, sq(MAX(yawAngData.yawAngErr, 1.0e-2)), yawAngData.order);
// send yaw alignment information to console
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF3 IMU%u yaw aligned",(unsigned)imu_index);
}
/********************************************************
* FUSE MEASURED_DATA *
********************************************************/
// select fusion of magnetometer data
void NavEKF3_core::SelectMagFusion()
{
// clear the flag that lets other processes know that the expensive magnetometer fusion operation has been performed on that time step
// used for load levelling
magFusePerformed = false;
// get default yaw source
const AP_NavEKF_Source::SourceYaw yaw_source = frontend->sources.getYawSource();
if (yaw_source != yaw_source_last) {
yaw_source_last = yaw_source;
yaw_source_reset = true;
}
// Store yaw angle when moving for use as a static reference when not moving
if (!onGroundNotMoving) {
if (fabsF(prevTnb[0][2]) < fabsF(prevTnb[1][2])) {
// A 321 rotation order is best conditioned because the X axis is closer to horizontal than the Y axis
yawAngDataStatic.order = rotationOrder::TAIT_BRYAN_321;
yawAngDataStatic.yawAng = atan2F(prevTnb[0][1], prevTnb[0][0]);
} else {
// A 312 rotation order is best conditioned because the Y axis is closer to horizontal than the X axis
yawAngDataStatic.order = rotationOrder::TAIT_BRYAN_312;
yawAngDataStatic.yawAng = atan2F(-prevTnb[1][0], prevTnb[1][1]);
}
yawAngDataStatic.yawAngErr = MAX(frontend->_yawNoise, 0.05f);
yawAngDataStatic.time_ms = imuDataDelayed.time_ms;
}
// Handle case where we are not using a yaw sensor of any type and attempt to reset the yaw in
// flight using the output from the GSF yaw estimator.
if ((yaw_source == AP_NavEKF_Source::SourceYaw::GSF) ||
(!use_compass() &&
yaw_source != AP_NavEKF_Source::SourceYaw::GPS &&
yaw_source != AP_NavEKF_Source::SourceYaw::GPS_COMPASS_FALLBACK &&
yaw_source != AP_NavEKF_Source::SourceYaw::EXTNAV)) {
// because this type of reset event is not as time critical, require a continuous history of valid estimates
if ((!yawAlignComplete || yaw_source_reset) && EKFGSF_yaw_valid_count >= GSF_YAW_VALID_HISTORY_THRESHOLD) {
const bool emergency_reset = (yaw_source != AP_NavEKF_Source::SourceYaw::GSF);
yawAlignComplete = EKFGSF_resetMainFilterYaw(emergency_reset);
yaw_source_reset = false;
}
if (imuSampleTime_ms - lastSynthYawTime_ms > 140) {
// use the EKF-GSF yaw estimator output as this is more robust than the EKF can achieve without a yaw measurement
// for non fixed wing platform types
ftype gsfYaw, gsfYawVariance;
const bool didUseEKFGSF = yawAlignComplete && EKFGSF_getYaw(gsfYaw, gsfYawVariance) && !assume_zero_sideslip() && fuseEulerYaw(yawFusionMethod::GSF);
// fallback methods
if (!didUseEKFGSF) {
if (onGroundNotMoving) {
// fuse last known good yaw angle before we stopped moving to allow yaw bias learning when on ground before flight
fuseEulerYaw(yawFusionMethod::STATIC);
} else if (onGround || PV_AidingMode == AID_NONE || (P[0][0]+P[1][1]+P[2][2]+P[3][3] > 0.01f)) {
// prevent uncontrolled yaw variance growth that can destabilise the covariance matrix
// by fusing a zero innovation
fuseEulerYaw(yawFusionMethod::PREDICTED);
}
}
magTestRatio.zero();
yawTestRatio = 0.0f;
lastSynthYawTime_ms = imuSampleTime_ms;
}
return;
}
// Handle case where we are using GPS yaw sensor instead of a magnetomer
if (yaw_source == AP_NavEKF_Source::SourceYaw::GPS || yaw_source == AP_NavEKF_Source::SourceYaw::GPS_COMPASS_FALLBACK) {
bool have_fused_gps_yaw = false;
if (storedYawAng.recall(yawAngDataDelayed,imuDataDelayed.time_ms)) {
if (tiltAlignComplete && (!yawAlignComplete || yaw_source_reset)) {
alignYawAngle(yawAngDataDelayed);
yaw_source_reset = false;
have_fused_gps_yaw = true;
lastSynthYawTime_ms = imuSampleTime_ms;
last_gps_yaw_fuse_ms = imuSampleTime_ms;
} else if (tiltAlignComplete && yawAlignComplete) {
have_fused_gps_yaw = fuseEulerYaw(yawFusionMethod::GPS);
if (have_fused_gps_yaw) {
last_gps_yaw_fuse_ms = imuSampleTime_ms;
}
}
last_gps_yaw_ms = imuSampleTime_ms;
} else if (tiltAlignComplete && !yawAlignComplete) {
// External yaw sources can take significant time to start providing yaw data so
// wuile waiting, fuse a 'fake' yaw observation at 7Hz to keeop the filter stable
if(imuSampleTime_ms - lastSynthYawTime_ms > 140) {
yawAngDataDelayed.yawAngErr = MAX(frontend->_yawNoise, 0.05f);
// update the yaw angle using the last estimate which will be used as a static yaw reference when movement stops
if (!onGroundNotMoving) {
// prevent uncontrolled yaw variance growth by fusing a zero innovation
fuseEulerYaw(yawFusionMethod::PREDICTED);
} else {
// fuse last known good yaw angle before we stopped moving to allow yaw bias learning when on ground before flight
fuseEulerYaw(yawFusionMethod::STATIC);
}
lastSynthYawTime_ms = imuSampleTime_ms;
}
} else if (tiltAlignComplete && yawAlignComplete && onGround && imuSampleTime_ms - last_gps_yaw_fuse_ms > 10000) {
// handle scenario where we were using GPS yaw previously, but the yaw fusion has timed out.
yaw_source_reset = true;
}
if (yaw_source == AP_NavEKF_Source::SourceYaw::GPS) {
// no fallback
return;
}
// get new mag data into delay buffer
readMagData();
if (have_fused_gps_yaw) {
if (gps_yaw_mag_fallback_active) {
gps_yaw_mag_fallback_active = false;
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF3 IMU%u yaw external",(unsigned)imu_index);
}
// update mag bias from GPS yaw
gps_yaw_mag_fallback_ok = learnMagBiasFromGPS();
return;
}
// we don't have GPS yaw data and are configured for
// fallback. If we've only just lost GPS yaw
if (imuSampleTime_ms - last_gps_yaw_ms < 10000) {
// don't fallback to magnetometer fusion for 10s
return;
}
if (!gps_yaw_mag_fallback_ok) {
// mag was not consistent enough with GPS to use it as
// fallback
return;
}
if (!inFlight) {
// don't fall back if not flying but reset to GPS yaw if it becomes available
return;
}
if (!gps_yaw_mag_fallback_active) {
gps_yaw_mag_fallback_active = true;
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF3 IMU%u yaw fallback active",(unsigned)imu_index);
}
// fall through to magnetometer fusion
}
#if EK3_FEATURE_EXTERNAL_NAV
// Handle case where we are using an external nav for yaw
const bool extNavYawDataToFuse = storedExtNavYawAng.recall(extNavYawAngDataDelayed, imuDataDelayed.time_ms);
if (yaw_source == AP_NavEKF_Source::SourceYaw::EXTNAV) {
if (extNavYawDataToFuse) {
if (tiltAlignComplete && (!yawAlignComplete || yaw_source_reset)) {
alignYawAngle(extNavYawAngDataDelayed);
yaw_source_reset = false;
} else if (tiltAlignComplete && yawAlignComplete) {
fuseEulerYaw(yawFusionMethod::EXTNAV);
}
last_extnav_yaw_fusion_ms = imuSampleTime_ms;
} else if (tiltAlignComplete && !yawAlignComplete) {
// External yaw sources can take significant time to start providing yaw data so
// while waiting, fuse a 'fake' yaw observation at 7Hz to keep the filter stable
if (imuSampleTime_ms - lastSynthYawTime_ms > 140) {
// update the yaw angle using the last estimate which will be used as a static yaw reference when movement stops
if (!onGroundNotMoving) {
// prevent uncontrolled yaw variance growth by fusing a zero innovation
fuseEulerYaw(yawFusionMethod::PREDICTED);
} else {
// fuse last known good yaw angle before we stopped moving to allow yaw bias learning when on ground before flight
fuseEulerYaw(yawFusionMethod::STATIC);
}
lastSynthYawTime_ms = imuSampleTime_ms;
}
}
}
#endif // EK3_FEATURE_EXTERNAL_NAV
// If we are using the compass and the magnetometer has been unhealthy for too long we declare a timeout
if (magHealth) {
magTimeout = false;
lastHealthyMagTime_ms = imuSampleTime_ms;
} else if ((imuSampleTime_ms - lastHealthyMagTime_ms) > frontend->magFailTimeLimit_ms && use_compass()) {
magTimeout = true;
}
if (yaw_source != AP_NavEKF_Source::SourceYaw::GPS_COMPASS_FALLBACK) {
// check for and read new magnetometer measurements. We don't
// read for GPS_COMPASS_FALLBACK as it has already been read
// above
readMagData();
}
// check for availability of magnetometer or other yaw data to fuse
magDataToFuse = storedMag.recall(magDataDelayed,imuDataDelayed.time_ms);
// Control reset of yaw and magnetic field states if we are using compass data
if (magDataToFuse) {
if (yaw_source_reset && (yaw_source == AP_NavEKF_Source::SourceYaw::COMPASS ||
yaw_source == AP_NavEKF_Source::SourceYaw::GPS_COMPASS_FALLBACK)) {
magYawResetRequest = true;
yaw_source_reset = false;
}
controlMagYawReset();
}
// determine if conditions are right to start a new fusion cycle
// wait until the EKF time horizon catches up with the measurement
bool dataReady = (magDataToFuse && statesInitialised && use_compass() && yawAlignComplete);
if (dataReady) {
// use the simple method of declination to maintain heading if we cannot use the magnetic field states
if(inhibitMagStates || magStateResetRequest || !magStateInitComplete) {
fuseEulerYaw(yawFusionMethod::MAGNETOMETER);
// zero the test ratio output from the inactive 3-axis magnetometer fusion
magTestRatio.zero();
} else {
// if we are not doing aiding with earth relative observations (eg GPS) then the declination is
// maintained by fusing declination as a synthesised observation
// We also fuse declination if we are using the WMM tables
if (PV_AidingMode != AID_ABSOLUTE ||
(frontend->_mag_ef_limit > 0 && have_table_earth_field)) {
FuseDeclination(0.34f);
}
// fuse the three magnetometer componenents using sequential fusion for each axis
FuseMagnetometer();
// zero the test ratio output from the inactive simple magnetometer yaw fusion
yawTestRatio = 0.0f;
}
}
// If the final yaw reset has been performed and the state variances are sufficiently low
// record that the earth field has been learned.
if (!magFieldLearned && finalInflightMagInit) {
magFieldLearned = (P[16][16] < sq(0.01f)) && (P[17][17] < sq(0.01f)) && (P[18][18] < sq(0.01f));
}
// record the last learned field variances
if (magFieldLearned && !inhibitMagStates) {
earthMagFieldVar.x = P[16][16];
earthMagFieldVar.y = P[17][17];
earthMagFieldVar.z = P[18][18];
bodyMagFieldVar.x = P[19][19];
bodyMagFieldVar.y = P[20][20];
bodyMagFieldVar.z = P[21][21];
}
}
/*
* Fuse magnetometer measurements using explicit algebraic equations generated with Matlab symbolic toolbox.
* The script file used to generate these and other equations in this filter can be found here:
* https://github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m
*/
void NavEKF3_core::FuseMagnetometer()
{
Vector24 H_MAG;
Vector5 SK_MX;
Vector5 SK_MY;
Vector5 SK_MZ;
// perform sequential fusion of magnetometer measurements.
// this assumes that the errors in the different components are
// uncorrelated which is not true, however in the absence of covariance
// data fit is the only assumption we can make
// so we might as well take advantage of the computational efficiencies
// associated with sequential fusion
// calculate observation jacobians and Kalman gains
// create aliases for state to make code easier to read:
const ftype q0 = stateStruct.quat[0];
const ftype q1 = stateStruct.quat[1];
const ftype q2 = stateStruct.quat[2];
const ftype q3 = stateStruct.quat[3];
const ftype magN = stateStruct.earth_magfield[0];
const ftype magE = stateStruct.earth_magfield[1];
const ftype magD = stateStruct.earth_magfield[2];
const ftype magXbias = stateStruct.body_magfield[0];
const ftype magYbias = stateStruct.body_magfield[1];
const ftype magZbias = stateStruct.body_magfield[2];
// rotate predicted earth components into body axes and calculate
// predicted measurements
Matrix3F DCM;
DCM[0][0] = q0*q0 + q1*q1 - q2*q2 - q3*q3;
DCM[0][1] = 2.0f*(q1*q2 + q0*q3);
DCM[0][2] = 2.0f*(q1*q3-q0*q2);
DCM[1][0] = 2.0f*(q1*q2 - q0*q3);
DCM[1][1] = q0*q0 - q1*q1 + q2*q2 - q3*q3;
DCM[1][2] = 2.0f*(q2*q3 + q0*q1);
DCM[2][0] = 2.0f*(q1*q3 + q0*q2);
DCM[2][1] = 2.0f*(q2*q3 - q0*q1);
DCM[2][2] = q0*q0 - q1*q1 - q2*q2 + q3*q3;
Vector3F MagPred;
MagPred[0] = DCM[0][0]*magN + DCM[0][1]*magE + DCM[0][2]*magD + magXbias;
MagPred[1] = DCM[1][0]*magN + DCM[1][1]*magE + DCM[1][2]*magD + magYbias;
MagPred[2] = DCM[2][0]*magN + DCM[2][1]*magE + DCM[2][2]*magD + magZbias;
// calculate the measurement innovation for each axis
for (uint8_t i = 0; i<=2; i++) {
innovMag[i] = MagPred[i] - magDataDelayed.mag[i];
}
// scale magnetometer observation error with total angular rate to allow for timing errors
const ftype R_MAG = sq(constrain_ftype(frontend->_magNoise, 0.01f, 0.5f)) + sq(frontend->magVarRateScale*imuDataDelayed.delAng.length() / imuDataDelayed.delAngDT);
// calculate common expressions used to calculate observation jacobians an innovation variance for each component
Vector9 SH_MAG;
SH_MAG[0] = 2.0f*magD*q3 + 2.0f*magE*q2 + 2.0f*magN*q1;
SH_MAG[1] = 2.0f*magD*q0 - 2.0f*magE*q1 + 2.0f*magN*q2;
SH_MAG[2] = 2.0f*magD*q1 + 2.0f*magE*q0 - 2.0f*magN*q3;
SH_MAG[3] = sq(q3);
SH_MAG[4] = sq(q2);
SH_MAG[5] = sq(q1);
SH_MAG[6] = sq(q0);
SH_MAG[7] = 2.0f*magN*q0;
SH_MAG[8] = 2.0f*magE*q3;
// Calculate the innovation variance for each axis
// X axis
varInnovMag[0] = (P[19][19] + R_MAG + P[1][19]*SH_MAG[0] - P[2][19]*SH_MAG[1] + P[3][19]*SH_MAG[2] - P[16][19]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + (2.0f*q0*q3 + 2.0f*q1*q2)*(P[19][17] + P[1][17]*SH_MAG[0] - P[2][17]*SH_MAG[1] + P[3][17]*SH_MAG[2] - P[16][17]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][17]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][17]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][17]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (2.0f*q0*q2 - 2.0f*q1*q3)*(P[19][18] + P[1][18]*SH_MAG[0] - P[2][18]*SH_MAG[1] + P[3][18]*SH_MAG[2] - P[16][18]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][18]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][18]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][18]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)*(P[19][0] + P[1][0]*SH_MAG[0] - P[2][0]*SH_MAG[1] + P[3][0]*SH_MAG[2] - P[16][0]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][0]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][0]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][0]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[17][19]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][19]*(2.0f*q0*q2 - 2.0f*q1*q3) + SH_MAG[0]*(P[19][1] + P[1][1]*SH_MAG[0] - P[2][1]*SH_MAG[1] + P[3][1]*SH_MAG[2] - P[16][1]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][1]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][1]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][1]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - SH_MAG[1]*(P[19][2] + P[1][2]*SH_MAG[0] - P[2][2]*SH_MAG[1] + P[3][2]*SH_MAG[2] - P[16][2]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][2]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][2]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][2]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[2]*(P[19][3] + P[1][3]*SH_MAG[0] - P[2][3]*SH_MAG[1] + P[3][3]*SH_MAG[2] - P[16][3]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][3]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][3]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][3]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6])*(P[19][16] + P[1][16]*SH_MAG[0] - P[2][16]*SH_MAG[1] + P[3][16]*SH_MAG[2] - P[16][16]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[17][16]*(2.0f*q0*q3 + 2.0f*q1*q2) - P[18][16]*(2.0f*q0*q2 - 2.0f*q1*q3) + P[0][16]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[0][19]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2));
if (varInnovMag[0] >= R_MAG) {
faultStatus.bad_xmag = false;
} else {
// the calculation is badly conditioned, so we cannot perform fusion on this step
// we reset the covariance matrix and try again next measurement
CovarianceInit();
faultStatus.bad_xmag = true;
return;
}
// Y axis
varInnovMag[1] = (P[20][20] + R_MAG + P[0][20]*SH_MAG[2] + P[1][20]*SH_MAG[1] + P[2][20]*SH_MAG[0] - P[17][20]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - (2.0f*q0*q3 - 2.0f*q1*q2)*(P[20][16] + P[0][16]*SH_MAG[2] + P[1][16]*SH_MAG[1] + P[2][16]*SH_MAG[0] - P[17][16]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][16]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][16]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][16]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (2.0f*q0*q1 + 2.0f*q2*q3)*(P[20][18] + P[0][18]*SH_MAG[2] + P[1][18]*SH_MAG[1] + P[2][18]*SH_MAG[0] - P[17][18]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][18]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][18]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][18]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)*(P[20][3] + P[0][3]*SH_MAG[2] + P[1][3]*SH_MAG[1] + P[2][3]*SH_MAG[0] - P[17][3]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][3]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][3]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][3]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - P[16][20]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][20]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_MAG[2]*(P[20][0] + P[0][0]*SH_MAG[2] + P[1][0]*SH_MAG[1] + P[2][0]*SH_MAG[0] - P[17][0]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][0]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][0]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][0]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[1]*(P[20][1] + P[0][1]*SH_MAG[2] + P[1][1]*SH_MAG[1] + P[2][1]*SH_MAG[0] - P[17][1]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][1]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][1]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][1]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[0]*(P[20][2] + P[0][2]*SH_MAG[2] + P[1][2]*SH_MAG[1] + P[2][2]*SH_MAG[0] - P[17][2]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][2]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][2]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][2]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6])*(P[20][17] + P[0][17]*SH_MAG[2] + P[1][17]*SH_MAG[1] + P[2][17]*SH_MAG[0] - P[17][17]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[16][17]*(2.0f*q0*q3 - 2.0f*q1*q2) + P[18][17]*(2.0f*q0*q1 + 2.0f*q2*q3) - P[3][17]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - P[3][20]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2));
if (varInnovMag[1] >= R_MAG) {
faultStatus.bad_ymag = false;
} else {
// the calculation is badly conditioned, so we cannot perform fusion on this step
// we reset the covariance matrix and try again next measurement
CovarianceInit();
faultStatus.bad_ymag = true;
return;
}
// Z axis
varInnovMag[2] = (P[21][21] + R_MAG + P[0][21]*SH_MAG[1] - P[1][21]*SH_MAG[2] + P[3][21]*SH_MAG[0] + P[18][21]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + (2.0f*q0*q2 + 2.0f*q1*q3)*(P[21][16] + P[0][16]*SH_MAG[1] - P[1][16]*SH_MAG[2] + P[3][16]*SH_MAG[0] + P[18][16]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][16]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][16]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][16]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - (2.0f*q0*q1 - 2.0f*q2*q3)*(P[21][17] + P[0][17]*SH_MAG[1] - P[1][17]*SH_MAG[2] + P[3][17]*SH_MAG[0] + P[18][17]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][17]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][17]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][17]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)*(P[21][2] + P[0][2]*SH_MAG[1] - P[1][2]*SH_MAG[2] + P[3][2]*SH_MAG[0] + P[18][2]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][2]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][2]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][2]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[16][21]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][21]*(2.0f*q0*q1 - 2.0f*q2*q3) + SH_MAG[1]*(P[21][0] + P[0][0]*SH_MAG[1] - P[1][0]*SH_MAG[2] + P[3][0]*SH_MAG[0] + P[18][0]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][0]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][0]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][0]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) - SH_MAG[2]*(P[21][1] + P[0][1]*SH_MAG[1] - P[1][1]*SH_MAG[2] + P[3][1]*SH_MAG[0] + P[18][1]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][1]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][1]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][1]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + SH_MAG[0]*(P[21][3] + P[0][3]*SH_MAG[1] - P[1][3]*SH_MAG[2] + P[3][3]*SH_MAG[0] + P[18][3]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][3]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][3]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][3]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + (SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6])*(P[21][18] + P[0][18]*SH_MAG[1] - P[1][18]*SH_MAG[2] + P[3][18]*SH_MAG[0] + P[18][18]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[16][18]*(2.0f*q0*q2 + 2.0f*q1*q3) - P[17][18]*(2.0f*q0*q1 - 2.0f*q2*q3) + P[2][18]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2)) + P[2][21]*(SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2));
if (varInnovMag[2] >= R_MAG) {
faultStatus.bad_zmag = false;
} else {
// the calculation is badly conditioned, so we cannot perform fusion on this step
// we reset the covariance matrix and try again next measurement
CovarianceInit();
faultStatus.bad_zmag = true;
return;
}
// calculate the innovation test ratios
for (uint8_t i = 0; i<=2; i++) {
magTestRatio[i] = sq(innovMag[i]) / (sq(MAX(0.01f * (ftype)frontend->_magInnovGate, 1.0f)) * varInnovMag[i]);
}
// check the last values from all components and set magnetometer health accordingly
magHealth = (magTestRatio[0] < 1.0f && magTestRatio[1] < 1.0f && magTestRatio[2] < 1.0f);
// if the magnetometer is unhealthy, do not proceed further
if (!magHealth) {
return;
}
for (uint8_t obsIndex = 0; obsIndex <= 2; obsIndex++) {
if (obsIndex == 0) {
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
H_MAG[0] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
H_MAG[1] = SH_MAG[0];
H_MAG[2] = -SH_MAG[1];
H_MAG[3] = SH_MAG[2];
H_MAG[16] = SH_MAG[5] - SH_MAG[4] - SH_MAG[3] + SH_MAG[6];
H_MAG[17] = 2.0f*q0*q3 + 2.0f*q1*q2;
H_MAG[18] = 2.0f*q1*q3 - 2.0f*q0*q2;
H_MAG[19] = 1.0f;
H_MAG[20] = 0.0f;
H_MAG[21] = 0.0f;
// calculate Kalman gain
SK_MX[0] = 1.0f / varInnovMag[0];
SK_MX[1] = SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6];
SK_MX[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
SK_MX[3] = 2.0f*q0*q2 - 2.0f*q1*q3;
SK_MX[4] = 2.0f*q0*q3 + 2.0f*q1*q2;
Kfusion[0] = SK_MX[0]*(P[0][19] + P[0][1]*SH_MAG[0] - P[0][2]*SH_MAG[1] + P[0][3]*SH_MAG[2] + P[0][0]*SK_MX[2] - P[0][16]*SK_MX[1] + P[0][17]*SK_MX[4] - P[0][18]*SK_MX[3]);
Kfusion[1] = SK_MX[0]*(P[1][19] + P[1][1]*SH_MAG[0] - P[1][2]*SH_MAG[1] + P[1][3]*SH_MAG[2] + P[1][0]*SK_MX[2] - P[1][16]*SK_MX[1] + P[1][17]*SK_MX[4] - P[1][18]*SK_MX[3]);
Kfusion[2] = SK_MX[0]*(P[2][19] + P[2][1]*SH_MAG[0] - P[2][2]*SH_MAG[1] + P[2][3]*SH_MAG[2] + P[2][0]*SK_MX[2] - P[2][16]*SK_MX[1] + P[2][17]*SK_MX[4] - P[2][18]*SK_MX[3]);
Kfusion[3] = SK_MX[0]*(P[3][19] + P[3][1]*SH_MAG[0] - P[3][2]*SH_MAG[1] + P[3][3]*SH_MAG[2] + P[3][0]*SK_MX[2] - P[3][16]*SK_MX[1] + P[3][17]*SK_MX[4] - P[3][18]*SK_MX[3]);
Kfusion[4] = SK_MX[0]*(P[4][19] + P[4][1]*SH_MAG[0] - P[4][2]*SH_MAG[1] + P[4][3]*SH_MAG[2] + P[4][0]*SK_MX[2] - P[4][16]*SK_MX[1] + P[4][17]*SK_MX[4] - P[4][18]*SK_MX[3]);
Kfusion[5] = SK_MX[0]*(P[5][19] + P[5][1]*SH_MAG[0] - P[5][2]*SH_MAG[1] + P[5][3]*SH_MAG[2] + P[5][0]*SK_MX[2] - P[5][16]*SK_MX[1] + P[5][17]*SK_MX[4] - P[5][18]*SK_MX[3]);
Kfusion[6] = SK_MX[0]*(P[6][19] + P[6][1]*SH_MAG[0] - P[6][2]*SH_MAG[1] + P[6][3]*SH_MAG[2] + P[6][0]*SK_MX[2] - P[6][16]*SK_MX[1] + P[6][17]*SK_MX[4] - P[6][18]*SK_MX[3]);
Kfusion[7] = SK_MX[0]*(P[7][19] + P[7][1]*SH_MAG[0] - P[7][2]*SH_MAG[1] + P[7][3]*SH_MAG[2] + P[7][0]*SK_MX[2] - P[7][16]*SK_MX[1] + P[7][17]*SK_MX[4] - P[7][18]*SK_MX[3]);
Kfusion[8] = SK_MX[0]*(P[8][19] + P[8][1]*SH_MAG[0] - P[8][2]*SH_MAG[1] + P[8][3]*SH_MAG[2] + P[8][0]*SK_MX[2] - P[8][16]*SK_MX[1] + P[8][17]*SK_MX[4] - P[8][18]*SK_MX[3]);
Kfusion[9] = SK_MX[0]*(P[9][19] + P[9][1]*SH_MAG[0] - P[9][2]*SH_MAG[1] + P[9][3]*SH_MAG[2] + P[9][0]*SK_MX[2] - P[9][16]*SK_MX[1] + P[9][17]*SK_MX[4] - P[9][18]*SK_MX[3]);
if (!inhibitDelAngBiasStates) {
Kfusion[10] = SK_MX[0]*(P[10][19] + P[10][1]*SH_MAG[0] - P[10][2]*SH_MAG[1] + P[10][3]*SH_MAG[2] + P[10][0]*SK_MX[2] - P[10][16]*SK_MX[1] + P[10][17]*SK_MX[4] - P[10][18]*SK_MX[3]);
Kfusion[11] = SK_MX[0]*(P[11][19] + P[11][1]*SH_MAG[0] - P[11][2]*SH_MAG[1] + P[11][3]*SH_MAG[2] + P[11][0]*SK_MX[2] - P[11][16]*SK_MX[1] + P[11][17]*SK_MX[4] - P[11][18]*SK_MX[3]);
Kfusion[12] = SK_MX[0]*(P[12][19] + P[12][1]*SH_MAG[0] - P[12][2]*SH_MAG[1] + P[12][3]*SH_MAG[2] + P[12][0]*SK_MX[2] - P[12][16]*SK_MX[1] + P[12][17]*SK_MX[4] - P[12][18]*SK_MX[3]);
} else {
// zero indexes 10 to 12
zero_range(&Kfusion[0], 10, 12);
}
if (!inhibitDelVelBiasStates) {
for (uint8_t index = 0; index < 3; index++) {
const uint8_t stateIndex = index + 13;
if (!dvelBiasAxisInhibit[index]) {
Kfusion[stateIndex] = SK_MX[0]*(P[stateIndex][19] + P[stateIndex][1]*SH_MAG[0] - P[stateIndex][2]*SH_MAG[1] + P[stateIndex][3]*SH_MAG[2] + P[stateIndex][0]*SK_MX[2] - P[stateIndex][16]*SK_MX[1] + P[stateIndex][17]*SK_MX[4] - P[stateIndex][18]*SK_MX[3]);
} else {
Kfusion[stateIndex] = 0.0f;
}
}
} else {
// zero indexes 13 to 15
zero_range(&Kfusion[0], 13, 15);
}
// zero Kalman gains to inhibit magnetic field state estimation
if (!inhibitMagStates) {
Kfusion[16] = SK_MX[0]*(P[16][19] + P[16][1]*SH_MAG[0] - P[16][2]*SH_MAG[1] + P[16][3]*SH_MAG[2] + P[16][0]*SK_MX[2] - P[16][16]*SK_MX[1] + P[16][17]*SK_MX[4] - P[16][18]*SK_MX[3]);
Kfusion[17] = SK_MX[0]*(P[17][19] + P[17][1]*SH_MAG[0] - P[17][2]*SH_MAG[1] + P[17][3]*SH_MAG[2] + P[17][0]*SK_MX[2] - P[17][16]*SK_MX[1] + P[17][17]*SK_MX[4] - P[17][18]*SK_MX[3]);
Kfusion[18] = SK_MX[0]*(P[18][19] + P[18][1]*SH_MAG[0] - P[18][2]*SH_MAG[1] + P[18][3]*SH_MAG[2] + P[18][0]*SK_MX[2] - P[18][16]*SK_MX[1] + P[18][17]*SK_MX[4] - P[18][18]*SK_MX[3]);
Kfusion[19] = SK_MX[0]*(P[19][19] + P[19][1]*SH_MAG[0] - P[19][2]*SH_MAG[1] + P[19][3]*SH_MAG[2] + P[19][0]*SK_MX[2] - P[19][16]*SK_MX[1] + P[19][17]*SK_MX[4] - P[19][18]*SK_MX[3]);
Kfusion[20] = SK_MX[0]*(P[20][19] + P[20][1]*SH_MAG[0] - P[20][2]*SH_MAG[1] + P[20][3]*SH_MAG[2] + P[20][0]*SK_MX[2] - P[20][16]*SK_MX[1] + P[20][17]*SK_MX[4] - P[20][18]*SK_MX[3]);
Kfusion[21] = SK_MX[0]*(P[21][19] + P[21][1]*SH_MAG[0] - P[21][2]*SH_MAG[1] + P[21][3]*SH_MAG[2] + P[21][0]*SK_MX[2] - P[21][16]*SK_MX[1] + P[21][17]*SK_MX[4] - P[21][18]*SK_MX[3]);
} else {
// zero indexes 16 to 21
zero_range(&Kfusion[0], 16, 21);
}
// zero Kalman gains to inhibit wind state estimation
if (!inhibitWindStates) {
Kfusion[22] = SK_MX[0]*(P[22][19] + P[22][1]*SH_MAG[0] - P[22][2]*SH_MAG[1] + P[22][3]*SH_MAG[2] + P[22][0]*SK_MX[2] - P[22][16]*SK_MX[1] + P[22][17]*SK_MX[4] - P[22][18]*SK_MX[3]);
Kfusion[23] = SK_MX[0]*(P[23][19] + P[23][1]*SH_MAG[0] - P[23][2]*SH_MAG[1] + P[23][3]*SH_MAG[2] + P[23][0]*SK_MX[2] - P[23][16]*SK_MX[1] + P[23][17]*SK_MX[4] - P[23][18]*SK_MX[3]);
} else {
// zero indexes 22 to 23 = 2
zero_range(&Kfusion[0], 22, 23);
}
// set flags to indicate to other processes that fusion has been performed and is required on the next frame
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
magFusePerformed = true;
} else if (obsIndex == 1) { // Fuse Y axis
// calculate observation jacobians
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
H_MAG[0] = SH_MAG[2];
H_MAG[1] = SH_MAG[1];
H_MAG[2] = SH_MAG[0];
H_MAG[3] = 2.0f*magD*q2 - SH_MAG[8] - SH_MAG[7];
H_MAG[16] = 2.0f*q1*q2 - 2.0f*q0*q3;
H_MAG[17] = SH_MAG[4] - SH_MAG[3] - SH_MAG[5] + SH_MAG[6];
H_MAG[18] = 2.0f*q0*q1 + 2.0f*q2*q3;
H_MAG[19] = 0.0f;
H_MAG[20] = 1.0f;
H_MAG[21] = 0.0f;
// calculate Kalman gain
SK_MY[0] = 1.0f / varInnovMag[1];
SK_MY[1] = SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6];
SK_MY[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
SK_MY[3] = 2.0f*q0*q3 - 2.0f*q1*q2;
SK_MY[4] = 2.0f*q0*q1 + 2.0f*q2*q3;
Kfusion[0] = SK_MY[0]*(P[0][20] + P[0][0]*SH_MAG[2] + P[0][1]*SH_MAG[1] + P[0][2]*SH_MAG[0] - P[0][3]*SK_MY[2] - P[0][17]*SK_MY[1] - P[0][16]*SK_MY[3] + P[0][18]*SK_MY[4]);
Kfusion[1] = SK_MY[0]*(P[1][20] + P[1][0]*SH_MAG[2] + P[1][1]*SH_MAG[1] + P[1][2]*SH_MAG[0] - P[1][3]*SK_MY[2] - P[1][17]*SK_MY[1] - P[1][16]*SK_MY[3] + P[1][18]*SK_MY[4]);
Kfusion[2] = SK_MY[0]*(P[2][20] + P[2][0]*SH_MAG[2] + P[2][1]*SH_MAG[1] + P[2][2]*SH_MAG[0] - P[2][3]*SK_MY[2] - P[2][17]*SK_MY[1] - P[2][16]*SK_MY[3] + P[2][18]*SK_MY[4]);
Kfusion[3] = SK_MY[0]*(P[3][20] + P[3][0]*SH_MAG[2] + P[3][1]*SH_MAG[1] + P[3][2]*SH_MAG[0] - P[3][3]*SK_MY[2] - P[3][17]*SK_MY[1] - P[3][16]*SK_MY[3] + P[3][18]*SK_MY[4]);
Kfusion[4] = SK_MY[0]*(P[4][20] + P[4][0]*SH_MAG[2] + P[4][1]*SH_MAG[1] + P[4][2]*SH_MAG[0] - P[4][3]*SK_MY[2] - P[4][17]*SK_MY[1] - P[4][16]*SK_MY[3] + P[4][18]*SK_MY[4]);
Kfusion[5] = SK_MY[0]*(P[5][20] + P[5][0]*SH_MAG[2] + P[5][1]*SH_MAG[1] + P[5][2]*SH_MAG[0] - P[5][3]*SK_MY[2] - P[5][17]*SK_MY[1] - P[5][16]*SK_MY[3] + P[5][18]*SK_MY[4]);
Kfusion[6] = SK_MY[0]*(P[6][20] + P[6][0]*SH_MAG[2] + P[6][1]*SH_MAG[1] + P[6][2]*SH_MAG[0] - P[6][3]*SK_MY[2] - P[6][17]*SK_MY[1] - P[6][16]*SK_MY[3] + P[6][18]*SK_MY[4]);
Kfusion[7] = SK_MY[0]*(P[7][20] + P[7][0]*SH_MAG[2] + P[7][1]*SH_MAG[1] + P[7][2]*SH_MAG[0] - P[7][3]*SK_MY[2] - P[7][17]*SK_MY[1] - P[7][16]*SK_MY[3] + P[7][18]*SK_MY[4]);
Kfusion[8] = SK_MY[0]*(P[8][20] + P[8][0]*SH_MAG[2] + P[8][1]*SH_MAG[1] + P[8][2]*SH_MAG[0] - P[8][3]*SK_MY[2] - P[8][17]*SK_MY[1] - P[8][16]*SK_MY[3] + P[8][18]*SK_MY[4]);
Kfusion[9] = SK_MY[0]*(P[9][20] + P[9][0]*SH_MAG[2] + P[9][1]*SH_MAG[1] + P[9][2]*SH_MAG[0] - P[9][3]*SK_MY[2] - P[9][17]*SK_MY[1] - P[9][16]*SK_MY[3] + P[9][18]*SK_MY[4]);
if (!inhibitDelAngBiasStates) {
Kfusion[10] = SK_MY[0]*(P[10][20] + P[10][0]*SH_MAG[2] + P[10][1]*SH_MAG[1] + P[10][2]*SH_MAG[0] - P[10][3]*SK_MY[2] - P[10][17]*SK_MY[1] - P[10][16]*SK_MY[3] + P[10][18]*SK_MY[4]);
Kfusion[11] = SK_MY[0]*(P[11][20] + P[11][0]*SH_MAG[2] + P[11][1]*SH_MAG[1] + P[11][2]*SH_MAG[0] - P[11][3]*SK_MY[2] - P[11][17]*SK_MY[1] - P[11][16]*SK_MY[3] + P[11][18]*SK_MY[4]);
Kfusion[12] = SK_MY[0]*(P[12][20] + P[12][0]*SH_MAG[2] + P[12][1]*SH_MAG[1] + P[12][2]*SH_MAG[0] - P[12][3]*SK_MY[2] - P[12][17]*SK_MY[1] - P[12][16]*SK_MY[3] + P[12][18]*SK_MY[4]);
} else {
// zero indexes 10 to 12
zero_range(&Kfusion[0], 10, 12);
}
if (!inhibitDelVelBiasStates) {
for (uint8_t index = 0; index < 3; index++) {
const uint8_t stateIndex = index + 13;
if (!dvelBiasAxisInhibit[index]) {
Kfusion[stateIndex] = SK_MY[0]*(P[stateIndex][20] + P[stateIndex][0]*SH_MAG[2] + P[stateIndex][1]*SH_MAG[1] + P[stateIndex][2]*SH_MAG[0] - P[stateIndex][3]*SK_MY[2] - P[stateIndex][17]*SK_MY[1] - P[stateIndex][16]*SK_MY[3] + P[stateIndex][18]*SK_MY[4]);
} else {
Kfusion[stateIndex] = 0.0f;
}
}
} else {
// zero indexes 13 to 15
zero_range(&Kfusion[0], 13, 15);
}
// zero Kalman gains to inhibit magnetic field state estimation
if (!inhibitMagStates) {
Kfusion[16] = SK_MY[0]*(P[16][20] + P[16][0]*SH_MAG[2] + P[16][1]*SH_MAG[1] + P[16][2]*SH_MAG[0] - P[16][3]*SK_MY[2] - P[16][17]*SK_MY[1] - P[16][16]*SK_MY[3] + P[16][18]*SK_MY[4]);
Kfusion[17] = SK_MY[0]*(P[17][20] + P[17][0]*SH_MAG[2] + P[17][1]*SH_MAG[1] + P[17][2]*SH_MAG[0] - P[17][3]*SK_MY[2] - P[17][17]*SK_MY[1] - P[17][16]*SK_MY[3] + P[17][18]*SK_MY[4]);
Kfusion[18] = SK_MY[0]*(P[18][20] + P[18][0]*SH_MAG[2] + P[18][1]*SH_MAG[1] + P[18][2]*SH_MAG[0] - P[18][3]*SK_MY[2] - P[18][17]*SK_MY[1] - P[18][16]*SK_MY[3] + P[18][18]*SK_MY[4]);
Kfusion[19] = SK_MY[0]*(P[19][20] + P[19][0]*SH_MAG[2] + P[19][1]*SH_MAG[1] + P[19][2]*SH_MAG[0] - P[19][3]*SK_MY[2] - P[19][17]*SK_MY[1] - P[19][16]*SK_MY[3] + P[19][18]*SK_MY[4]);
Kfusion[20] = SK_MY[0]*(P[20][20] + P[20][0]*SH_MAG[2] + P[20][1]*SH_MAG[1] + P[20][2]*SH_MAG[0] - P[20][3]*SK_MY[2] - P[20][17]*SK_MY[1] - P[20][16]*SK_MY[3] + P[20][18]*SK_MY[4]);
Kfusion[21] = SK_MY[0]*(P[21][20] + P[21][0]*SH_MAG[2] + P[21][1]*SH_MAG[1] + P[21][2]*SH_MAG[0] - P[21][3]*SK_MY[2] - P[21][17]*SK_MY[1] - P[21][16]*SK_MY[3] + P[21][18]*SK_MY[4]);
} else {
// zero indexes 16 to 21
zero_range(&Kfusion[0], 16, 21);
}
// zero Kalman gains to inhibit wind state estimation
if (!inhibitWindStates) {
Kfusion[22] = SK_MY[0]*(P[22][20] + P[22][0]*SH_MAG[2] + P[22][1]*SH_MAG[1] + P[22][2]*SH_MAG[0] - P[22][3]*SK_MY[2] - P[22][17]*SK_MY[1] - P[22][16]*SK_MY[3] + P[22][18]*SK_MY[4]);
Kfusion[23] = SK_MY[0]*(P[23][20] + P[23][0]*SH_MAG[2] + P[23][1]*SH_MAG[1] + P[23][2]*SH_MAG[0] - P[23][3]*SK_MY[2] - P[23][17]*SK_MY[1] - P[23][16]*SK_MY[3] + P[23][18]*SK_MY[4]);
} else {
// zero indexes 22 to 23
zero_range(&Kfusion[0], 22, 23);
}
// set flags to indicate to other processes that fusion has been performed and is required on the next frame
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
magFusePerformed = true;
}
else if (obsIndex == 2) // we are now fusing the Z measurement
{
// calculate observation jacobians
for (uint8_t i = 0; i<=stateIndexLim; i++) H_MAG[i] = 0.0f;
H_MAG[0] = SH_MAG[1];
H_MAG[1] = -SH_MAG[2];
H_MAG[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
H_MAG[3] = SH_MAG[0];
H_MAG[16] = 2.0f*q0*q2 + 2.0f*q1*q3;
H_MAG[17] = 2.0f*q2*q3 - 2.0f*q0*q1;
H_MAG[18] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6];
H_MAG[19] = 0.0f;
H_MAG[20] = 0.0f;
H_MAG[21] = 1.0f;
// calculate Kalman gain
SK_MZ[0] = 1.0f / varInnovMag[2];
SK_MZ[1] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6];
SK_MZ[2] = SH_MAG[7] + SH_MAG[8] - 2.0f*magD*q2;
SK_MZ[3] = 2.0f*q0*q1 - 2.0f*q2*q3;
SK_MZ[4] = 2.0f*q0*q2 + 2.0f*q1*q3;
Kfusion[0] = SK_MZ[0]*(P[0][21] + P[0][0]*SH_MAG[1] - P[0][1]*SH_MAG[2] + P[0][3]*SH_MAG[0] + P[0][2]*SK_MZ[2] + P[0][18]*SK_MZ[1] + P[0][16]*SK_MZ[4] - P[0][17]*SK_MZ[3]);
Kfusion[1] = SK_MZ[0]*(P[1][21] + P[1][0]*SH_MAG[1] - P[1][1]*SH_MAG[2] + P[1][3]*SH_MAG[0] + P[1][2]*SK_MZ[2] + P[1][18]*SK_MZ[1] + P[1][16]*SK_MZ[4] - P[1][17]*SK_MZ[3]);
Kfusion[2] = SK_MZ[0]*(P[2][21] + P[2][0]*SH_MAG[1] - P[2][1]*SH_MAG[2] + P[2][3]*SH_MAG[0] + P[2][2]*SK_MZ[2] + P[2][18]*SK_MZ[1] + P[2][16]*SK_MZ[4] - P[2][17]*SK_MZ[3]);
Kfusion[3] = SK_MZ[0]*(P[3][21] + P[3][0]*SH_MAG[1] - P[3][1]*SH_MAG[2] + P[3][3]*SH_MAG[0] + P[3][2]*SK_MZ[2] + P[3][18]*SK_MZ[1] + P[3][16]*SK_MZ[4] - P[3][17]*SK_MZ[3]);
Kfusion[4] = SK_MZ[0]*(P[4][21] + P[4][0]*SH_MAG[1] - P[4][1]*SH_MAG[2] + P[4][3]*SH_MAG[0] + P[4][2]*SK_MZ[2] + P[4][18]*SK_MZ[1] + P[4][16]*SK_MZ[4] - P[4][17]*SK_MZ[3]);
Kfusion[5] = SK_MZ[0]*(P[5][21] + P[5][0]*SH_MAG[1] - P[5][1]*SH_MAG[2] + P[5][3]*SH_MAG[0] + P[5][2]*SK_MZ[2] + P[5][18]*SK_MZ[1] + P[5][16]*SK_MZ[4] - P[5][17]*SK_MZ[3]);
Kfusion[6] = SK_MZ[0]*(P[6][21] + P[6][0]*SH_MAG[1] - P[6][1]*SH_MAG[2] + P[6][3]*SH_MAG[0] + P[6][2]*SK_MZ[2] + P[6][18]*SK_MZ[1] + P[6][16]*SK_MZ[4] - P[6][17]*SK_MZ[3]);
Kfusion[7] = SK_MZ[0]*(P[7][21] + P[7][0]*SH_MAG[1] - P[7][1]*SH_MAG[2] + P[7][3]*SH_MAG[0] + P[7][2]*SK_MZ[2] + P[7][18]*SK_MZ[1] + P[7][16]*SK_MZ[4] - P[7][17]*SK_MZ[3]);
Kfusion[8] = SK_MZ[0]*(P[8][21] + P[8][0]*SH_MAG[1] - P[8][1]*SH_MAG[2] + P[8][3]*SH_MAG[0] + P[8][2]*SK_MZ[2] + P[8][18]*SK_MZ[1] + P[8][16]*SK_MZ[4] - P[8][17]*SK_MZ[3]);
Kfusion[9] = SK_MZ[0]*(P[9][21] + P[9][0]*SH_MAG[1] - P[9][1]*SH_MAG[2] + P[9][3]*SH_MAG[0] + P[9][2]*SK_MZ[2] + P[9][18]*SK_MZ[1] + P[9][16]*SK_MZ[4] - P[9][17]*SK_MZ[3]);
if (!inhibitDelAngBiasStates) {
Kfusion[10] = SK_MZ[0]*(P[10][21] + P[10][0]*SH_MAG[1] - P[10][1]*SH_MAG[2] + P[10][3]*SH_MAG[0] + P[10][2]*SK_MZ[2] + P[10][18]*SK_MZ[1] + P[10][16]*SK_MZ[4] - P[10][17]*SK_MZ[3]);
Kfusion[11] = SK_MZ[0]*(P[11][21] + P[11][0]*SH_MAG[1] - P[11][1]*SH_MAG[2] + P[11][3]*SH_MAG[0] + P[11][2]*SK_MZ[2] + P[11][18]*SK_MZ[1] + P[11][16]*SK_MZ[4] - P[11][17]*SK_MZ[3]);
Kfusion[12] = SK_MZ[0]*(P[12][21] + P[12][0]*SH_MAG[1] - P[12][1]*SH_MAG[2] + P[12][3]*SH_MAG[0] + P[12][2]*SK_MZ[2] + P[12][18]*SK_MZ[1] + P[12][16]*SK_MZ[4] - P[12][17]*SK_MZ[3]);
} else {
// zero indexes 10 to 12
zero_range(&Kfusion[0], 10, 12);
}
if (!inhibitDelVelBiasStates) {
for (uint8_t index = 0; index < 3; index++) {
const uint8_t stateIndex = index + 13;
if (!dvelBiasAxisInhibit[index]) {
Kfusion[stateIndex] = SK_MZ[0]*(P[stateIndex][21] + P[stateIndex][0]*SH_MAG[1] - P[stateIndex][1]*SH_MAG[2] + P[stateIndex][3]*SH_MAG[0] + P[stateIndex][2]*SK_MZ[2] + P[stateIndex][18]*SK_MZ[1] + P[stateIndex][16]*SK_MZ[4] - P[stateIndex][17]*SK_MZ[3]);
} else {
Kfusion[stateIndex] = 0.0f;
}
}
} else {
// zero indexes 13 to 15
zero_range(&Kfusion[0], 13, 15);
}
// zero Kalman gains to inhibit magnetic field state estimation
if (!inhibitMagStates) {
Kfusion[16] = SK_MZ[0]*(P[16][21] + P[16][0]*SH_MAG[1] - P[16][1]*SH_MAG[2] + P[16][3]*SH_MAG[0] + P[16][2]*SK_MZ[2] + P[16][18]*SK_MZ[1] + P[16][16]*SK_MZ[4] - P[16][17]*SK_MZ[3]);
Kfusion[17] = SK_MZ[0]*(P[17][21] + P[17][0]*SH_MAG[1] - P[17][1]*SH_MAG[2] + P[17][3]*SH_MAG[0] + P[17][2]*SK_MZ[2] + P[17][18]*SK_MZ[1] + P[17][16]*SK_MZ[4] - P[17][17]*SK_MZ[3]);
Kfusion[18] = SK_MZ[0]*(P[18][21] + P[18][0]*SH_MAG[1] - P[18][1]*SH_MAG[2] + P[18][3]*SH_MAG[0] + P[18][2]*SK_MZ[2] + P[18][18]*SK_MZ[1] + P[18][16]*SK_MZ[4] - P[18][17]*SK_MZ[3]);
Kfusion[19] = SK_MZ[0]*(P[19][21] + P[19][0]*SH_MAG[1] - P[19][1]*SH_MAG[2] + P[19][3]*SH_MAG[0] + P[19][2]*SK_MZ[2] + P[19][18]*SK_MZ[1] + P[19][16]*SK_MZ[4] - P[19][17]*SK_MZ[3]);
Kfusion[20] = SK_MZ[0]*(P[20][21] + P[20][0]*SH_MAG[1] - P[20][1]*SH_MAG[2] + P[20][3]*SH_MAG[0] + P[20][2]*SK_MZ[2] + P[20][18]*SK_MZ[1] + P[20][16]*SK_MZ[4] - P[20][17]*SK_MZ[3]);
Kfusion[21] = SK_MZ[0]*(P[21][21] + P[21][0]*SH_MAG[1] - P[21][1]*SH_MAG[2] + P[21][3]*SH_MAG[0] + P[21][2]*SK_MZ[2] + P[21][18]*SK_MZ[1] + P[21][16]*SK_MZ[4] - P[21][17]*SK_MZ[3]);
} else {
// zero indexes 16 to 21
zero_range(&Kfusion[0], 16, 21);
}
// zero Kalman gains to inhibit wind state estimation
if (!inhibitWindStates) {
Kfusion[22] = SK_MZ[0]*(P[22][21] + P[22][0]*SH_MAG[1] - P[22][1]*SH_MAG[2] + P[22][3]*SH_MAG[0] + P[22][2]*SK_MZ[2] + P[22][18]*SK_MZ[1] + P[22][16]*SK_MZ[4] - P[22][17]*SK_MZ[3]);
Kfusion[23] = SK_MZ[0]*(P[23][21] + P[23][0]*SH_MAG[1] - P[23][1]*SH_MAG[2] + P[23][3]*SH_MAG[0] + P[23][2]*SK_MZ[2] + P[23][18]*SK_MZ[1] + P[23][16]*SK_MZ[4] - P[23][17]*SK_MZ[3]);
} else {
// zero indexes 22 to 23
zero_range(&Kfusion[0], 22, 23);
}
// set flags to indicate to other processes that fusion has been performed and is required on the next frame
// this can be used by other fusion processes to avoid fusing on the same frame as this expensive step
magFusePerformed = true;
}
// correct the covariance P = (I - K*H)*P
// take advantage of the empty columns in KH to reduce the
// number of operations
for (unsigned i = 0; i<=stateIndexLim; i++) {
for (unsigned j = 0; j<=3; j++) {
KH[i][j] = Kfusion[i] * H_MAG[j];
}
for (unsigned j = 4; j<=15; j++) {
KH[i][j] = 0.0f;
}
for (unsigned j = 16; j<=21; j++) {
KH[i][j] = Kfusion[i] * H_MAG[j];
}
for (unsigned j = 22; j<=23; j++) {
KH[i][j] = 0.0f;
}
}
for (unsigned j = 0; j<=stateIndexLim; j++) {
for (unsigned i = 0; i<=stateIndexLim; i++) {
ftype res = 0;
res += KH[i][0] * P[0][j];
res += KH[i][1] * P[1][j];
res += KH[i][2] * P[2][j];
res += KH[i][3] * P[3][j];
res += KH[i][16] * P[16][j];
res += KH[i][17] * P[17][j];
res += KH[i][18] * P[18][j];
res += KH[i][19] * P[19][j];
res += KH[i][20] * P[20][j];
res += KH[i][21] * P[21][j];
KHP[i][j] = res;
}
}
// Check that we are not going to drive any variances negative and skip the update if so
bool healthyFusion = true;
for (uint8_t i= 0; i<=stateIndexLim; i++) {
if (KHP[i][i] > P[i][i]) {
healthyFusion = false;
}
}
if (healthyFusion) {
// update the covariance matrix
for (uint8_t i= 0; i<=stateIndexLim; i++) {
for (uint8_t j= 0; j<=stateIndexLim; j++) {
P[i][j] = P[i][j] - KHP[i][j];
}
}
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning.
ForceSymmetry();
ConstrainVariances();
// correct the state vector
for (uint8_t j= 0; j<=stateIndexLim; j++) {
statesArray[j] = statesArray[j] - Kfusion[j] * innovMag[obsIndex];
}
// add table constraint here for faster convergence
if (have_table_earth_field && frontend->_mag_ef_limit > 0) {
MagTableConstrain();
}
stateStruct.quat.normalize();
} else {
// record bad axis
if (obsIndex == 0) {
faultStatus.bad_xmag = true;
} else if (obsIndex == 1) {
faultStatus.bad_ymag = true;
} else if (obsIndex == 2) {
faultStatus.bad_zmag = true;
}
CovarianceInit();
return;
}
}
}
/*
* Fuse direct yaw measurements using explicit algebraic equations auto-generated from
* /AP_NavEKF3/derivation/main.py with output recorded in /AP_NavEKF3/derivation/generated/yaw_generated.cpp
* Returns true if the fusion was successful
*/
bool NavEKF3_core::fuseEulerYaw(yawFusionMethod method)
{
const ftype &q0 = stateStruct.quat[0];
const ftype &q1 = stateStruct.quat[1];
const ftype &q2 = stateStruct.quat[2];
const ftype &q3 = stateStruct.quat[3];
ftype gsfYaw, gsfYawVariance;
if (method == yawFusionMethod::GSF) {
if (!EKFGSF_getYaw(gsfYaw, gsfYawVariance)) {
return false;
}
}
// yaw measurement error variance (rad^2)
ftype R_YAW;
switch (method) {
case yawFusionMethod::GPS:
R_YAW = sq(yawAngDataDelayed.yawAngErr);
break;
case yawFusionMethod::GSF:
R_YAW = gsfYawVariance;
break;
case yawFusionMethod::STATIC:
R_YAW = sq(yawAngDataStatic.yawAngErr);
break;
case yawFusionMethod::MAGNETOMETER:
case yawFusionMethod::PREDICTED:
default:
R_YAW = sq(frontend->_yawNoise);
break;
#if EK3_FEATURE_EXTERNAL_NAV
case yawFusionMethod::EXTNAV:
R_YAW = sq(MAX(extNavYawAngDataDelayed.yawAngErr, 0.05f));
break;
#endif
}
// determine if a 321 or 312 Euler sequence is best
rotationOrder order;
switch (method) {
case yawFusionMethod::GPS:
order = yawAngDataDelayed.order;
break;
case yawFusionMethod::STATIC:
order = yawAngDataStatic.order;
break;
case yawFusionMethod::MAGNETOMETER:
case yawFusionMethod::GSF:
case yawFusionMethod::PREDICTED:
default:
// determined automatically
order = (fabsF(prevTnb[0][2]) < fabsF(prevTnb[1][2])) ? rotationOrder::TAIT_BRYAN_321 : rotationOrder::TAIT_BRYAN_312;
break;
#if EK3_FEATURE_EXTERNAL_NAV
case yawFusionMethod::EXTNAV:
order = extNavYawAngDataDelayed.order;
break;
#endif
}
// calculate observation jacobian, predicted yaw and zero yaw body to earth rotation matrix
ftype yawAngPredicted;
ftype H_YAW[4];
Matrix3F Tbn_zeroYaw;
if (order == rotationOrder::TAIT_BRYAN_321) {
// calculate 321 yaw observation matrix - option A or B to avoid singularity in derivation at +-90 degrees yaw
bool canUseA = false;
const ftype SA0 = 2*q3;
const ftype SA1 = 2*q2;
const ftype SA2 = SA0*q0 + SA1*q1;
const ftype SA3 = sq(q0) + sq(q1) - sq(q2) - sq(q3);
ftype SA4, SA5_inv;
if (is_positive(sq(SA3))) {
SA4 = 1.0F/sq(SA3);
SA5_inv = sq(SA2)*SA4 + 1;
canUseA = is_positive(fabsF(SA5_inv));
}
bool canUseB = false;
const ftype SB0 = 2*q0;
const ftype SB1 = 2*q1;
const ftype SB2 = SB0*q3 + SB1*q2;
const ftype SB4 = sq(q0) + sq(q1) - sq(q2) - sq(q3);
ftype SB3, SB5_inv;
if (is_positive(sq(SB2))) {
SB3 = 1.0F/sq(SB2);
SB5_inv = SB3*sq(SB4) + 1;
canUseB = is_positive(fabsF(SB5_inv));
}
if (canUseA && (!canUseB || fabsF(SA5_inv) >= fabsF(SB5_inv))) {
const ftype SA5 = 1.0F/SA5_inv;
const ftype SA6 = 1.0F/SA3;
const ftype SA7 = SA2*SA4;
const ftype SA8 = 2*SA7;
const ftype SA9 = 2*SA6;
H_YAW[0] = SA5*(SA0*SA6 - SA8*q0);
H_YAW[1] = SA5*(SA1*SA6 - SA8*q1);
H_YAW[2] = SA5*(SA1*SA7 + SA9*q1);
H_YAW[3] = SA5*(SA0*SA7 + SA9*q0);
} else if (canUseB && (!canUseA || fabsF(SB5_inv) > fabsF(SA5_inv))) {
const ftype SB5 = 1.0F/SB5_inv;
const ftype SB6 = 1.0F/SB2;
const ftype SB7 = SB3*SB4;
const ftype SB8 = 2*SB7;
const ftype SB9 = 2*SB6;
H_YAW[0] = -SB5*(SB0*SB6 - SB8*q3);
H_YAW[1] = -SB5*(SB1*SB6 - SB8*q2);
H_YAW[2] = -SB5*(-SB1*SB7 - SB9*q2);
H_YAW[3] = -SB5*(-SB0*SB7 - SB9*q3);
} else {
return false;
}
// Get the 321 euler angles
Vector3F euler321;
stateStruct.quat.to_euler(euler321.x, euler321.y, euler321.z);
yawAngPredicted = euler321.z;
// set the yaw to zero and calculate the zero yaw rotation from body to earth frame
Tbn_zeroYaw.from_euler(euler321.x, euler321.y, 0.0f);
} else if (order == rotationOrder::TAIT_BRYAN_312) {
// calculate 312 yaw observation matrix - option A or B to avoid singularity in derivation at +-90 degrees yaw
bool canUseA = false;
const ftype SA0 = 2*q3;
const ftype SA1 = 2*q2;
const ftype SA2 = SA0*q0 - SA1*q1;
const ftype SA3 = sq(q0) - sq(q1) + sq(q2) - sq(q3);
ftype SA4, SA5_inv;
if (is_positive(sq(SA3))) {
SA4 = 1.0F/sq(SA3);
SA5_inv = sq(SA2)*SA4 + 1;
canUseA = is_positive(fabsF(SA5_inv));
}
bool canUseB = false;
const ftype SB0 = 2*q0;
const ftype SB1 = 2*q1;
const ftype SB2 = -SB0*q3 + SB1*q2;
const ftype SB4 = -sq(q0) + sq(q1) - sq(q2) + sq(q3);
ftype SB3, SB5_inv;
if (is_positive(sq(SB2))) {
SB3 = 1.0F/sq(SB2);
SB5_inv = SB3*sq(SB4) + 1;
canUseB = is_positive(fabsF(SB5_inv));
}
if (canUseA && (!canUseB || fabsF(SA5_inv) >= fabsF(SB5_inv))) {
const ftype SA5 = 1.0F/SA5_inv;
const ftype SA6 = 1.0F/SA3;
const ftype SA7 = SA2*SA4;
const ftype SA8 = 2*SA7;
const ftype SA9 = 2*SA6;
H_YAW[0] = SA5*(SA0*SA6 - SA8*q0);
H_YAW[1] = SA5*(-SA1*SA6 + SA8*q1);
H_YAW[2] = SA5*(-SA1*SA7 - SA9*q1);
H_YAW[3] = SA5*(SA0*SA7 + SA9*q0);
} else if (canUseB && (!canUseA || fabsF(SB5_inv) > fabsF(SA5_inv))) {
const ftype SB5 = 1.0F/SB5_inv;
const ftype SB6 = 1.0F/SB2;
const ftype SB7 = SB3*SB4;
const ftype SB8 = 2*SB7;
const ftype SB9 = 2*SB6;
H_YAW[0] = -SB5*(-SB0*SB6 + SB8*q3);
H_YAW[1] = -SB5*(SB1*SB6 - SB8*q2);
H_YAW[2] = -SB5*(-SB1*SB7 - SB9*q2);
H_YAW[3] = -SB5*(SB0*SB7 + SB9*q3);
} else {
return false;
}
// Get the 312 Tait Bryan rotation angles
Vector3F euler312 = stateStruct.quat.to_vector312();
yawAngPredicted = euler312.z;
// set the yaw to zero and calculate the zero yaw rotation from body to earth frame
Tbn_zeroYaw.from_euler312(euler312.x, euler312.y, 0.0f);
} else {
// order not supported
return false;
}
// Calculate the innovation
switch (method) {
case yawFusionMethod::MAGNETOMETER:
{
// Use the difference between the horizontal projection and declination to give the measured yaw
// rotate measured mag components into earth frame
Vector3F magMeasNED = Tbn_zeroYaw*magDataDelayed.mag;
ftype yawAngMeasured = wrap_PI(-atan2F(magMeasNED.y, magMeasNED.x) + MagDeclination());
innovYaw = wrap_PI(yawAngPredicted - yawAngMeasured);
break;
}
case yawFusionMethod::GPS:
innovYaw = wrap_PI(yawAngPredicted - yawAngDataDelayed.yawAng);
break;
case yawFusionMethod::STATIC:
innovYaw = wrap_PI(yawAngPredicted - yawAngDataStatic.yawAng);
break;
case yawFusionMethod::GSF:
innovYaw = wrap_PI(yawAngPredicted - gsfYaw);
break;
case yawFusionMethod::PREDICTED:
default:
innovYaw = 0.0f;
break;
#if EK3_FEATURE_EXTERNAL_NAV
case yawFusionMethod::EXTNAV:
innovYaw = wrap_PI(yawAngPredicted - extNavYawAngDataDelayed.yawAng);
break;
#endif
}
// Calculate innovation variance and Kalman gains, taking advantage of the fact that only the first 4 elements in H are non zero
ftype PH[4];
ftype varInnov = R_YAW;
for (uint8_t rowIndex=0; rowIndex<=3; rowIndex++) {
PH[rowIndex] = 0.0f;
for (uint8_t colIndex=0; colIndex<=3; colIndex++) {
PH[rowIndex] += P[rowIndex][colIndex]*H_YAW[colIndex];
}
varInnov += H_YAW[rowIndex]*PH[rowIndex];
}
ftype varInnovInv;
if (varInnov >= R_YAW) {
varInnovInv = 1.0f / varInnov;
// output numerical health status
faultStatus.bad_yaw = false;
} else {
// the calculation is badly conditioned, so we cannot perform fusion on this step
// we reset the covariance matrix and try again next measurement
CovarianceInit();
// output numerical health status
faultStatus.bad_yaw = true;
return false;
}
// calculate Kalman gain
for (uint8_t rowIndex=0; rowIndex<=stateIndexLim; rowIndex++) {
Kfusion[rowIndex] = 0.0f;
for (uint8_t colIndex=0; colIndex<=3; colIndex++) {
Kfusion[rowIndex] += P[rowIndex][colIndex]*H_YAW[colIndex];
}
Kfusion[rowIndex] *= varInnovInv;
}
// calculate the innovation test ratio
yawTestRatio = sq(innovYaw) / (sq(MAX(0.01f * (ftype)frontend->_yawInnovGate, 1.0f)) * varInnov);
// Declare the magnetometer unhealthy if the innovation test fails
if (yawTestRatio > 1.0f) {
magHealth = false;
// On the ground a large innovation could be due to large initial gyro bias or magnetic interference from nearby objects
// If we are flying, then it is more likely due to a magnetometer fault and we should not fuse the data
if (inFlight) {
return false;
}
} else {
magHealth = true;
}
// correct the covariance using P = P - K*H*P taking advantage of the fact that only the first 3 elements in H are non zero
// calculate K*H*P
for (uint8_t row = 0; row <= stateIndexLim; row++) {
for (uint8_t column = 0; column <= 3; column++) {
KH[row][column] = Kfusion[row] * H_YAW[column];
}
}
for (uint8_t row = 0; row <= stateIndexLim; row++) {
for (uint8_t column = 0; column <= stateIndexLim; column++) {
ftype tmp = KH[row][0] * P[0][column];
tmp += KH[row][1] * P[1][column];
tmp += KH[row][2] * P[2][column];
tmp += KH[row][3] * P[3][column];
KHP[row][column] = tmp;
}
}
// Check that we are not going to drive any variances negative and skip the update if so
bool healthyFusion = true;
for (uint8_t i= 0; i<=stateIndexLim; i++) {
if (KHP[i][i] > P[i][i]) {
healthyFusion = false;
}
}
if (healthyFusion) {
// update the covariance matrix
for (uint8_t i= 0; i<=stateIndexLim; i++) {
for (uint8_t j= 0; j<=stateIndexLim; j++) {
P[i][j] = P[i][j] - KHP[i][j];
}
}
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning.
ForceSymmetry();
ConstrainVariances();
// correct the state vector
for (uint8_t i=0; i<=stateIndexLim; i++) {
statesArray[i] -= Kfusion[i] * constrain_ftype(innovYaw, -0.5f, 0.5f);
}
stateStruct.quat.normalize();
// record fusion numerical health status
faultStatus.bad_yaw = false;
} else {
// record fusion numerical health status
faultStatus.bad_yaw = true;
}
return true;
}
/*
* Fuse declination angle using explicit algebraic equations generated with Matlab symbolic toolbox.
* The script file used to generate these and other equations in this filter can be found here:
* https://github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m
* This is used to prevent the declination of the EKF earth field states from drifting during operation without GPS
* or some other absolute position or velocity reference
*/
void NavEKF3_core::FuseDeclination(ftype declErr)
{
// declination error variance (rad^2)
const ftype R_DECL = sq(declErr);
// copy required states to local variables
ftype magN = stateStruct.earth_magfield.x;
ftype magE = stateStruct.earth_magfield.y;
// prevent bad earth field states from causing numerical errors or exceptions
if (magN < 1e-3f) {
return;
}
// Calculate observation Jacobian and Kalman gains
// Calculate intermediate variables
ftype t2 = magE*magE;
ftype t3 = magN*magN;
ftype t4 = t2+t3;
// if the horizontal magnetic field is too small, this calculation will be badly conditioned
if (t4 < 1e-4f) {
return;
}
ftype t5 = P[16][16]*t2;
ftype t6 = P[17][17]*t3;
ftype t7 = t2*t2;
ftype t8 = R_DECL*t7;
ftype t9 = t3*t3;
ftype t10 = R_DECL*t9;
ftype t11 = R_DECL*t2*t3*2.0f;
ftype t14 = P[16][17]*magE*magN;
ftype t15 = P[17][16]*magE*magN;
ftype t12 = t5+t6+t8+t10+t11-t14-t15;
ftype t13;
if (fabsF(t12) > 1e-6f) {
t13 = 1.0f / t12;
} else {
return;
}
ftype t18 = magE*magE;
ftype t19 = magN*magN;
ftype t20 = t18+t19;
ftype t21;
if (fabsF(t20) > 1e-6f) {
t21 = 1.0f/t20;
} else {
return;
}
// Calculate the observation Jacobian
// Note only 2 terms are non-zero which can be used in matrix operations for calculation of Kalman gains and covariance update to significantly reduce cost
ftype H_DECL[24] = {};
H_DECL[16] = -magE*t21;
H_DECL[17] = magN*t21;
Kfusion[0] = -t4*t13*(P[0][16]*magE-P[0][17]*magN);
Kfusion[1] = -t4*t13*(P[1][16]*magE-P[1][17]*magN);
Kfusion[2] = -t4*t13*(P[2][16]*magE-P[2][17]*magN);
Kfusion[3] = -t4*t13*(P[3][16]*magE-P[3][17]*magN);
Kfusion[4] = -t4*t13*(P[4][16]*magE-P[4][17]*magN);
Kfusion[5] = -t4*t13*(P[5][16]*magE-P[5][17]*magN);
Kfusion[6] = -t4*t13*(P[6][16]*magE-P[6][17]*magN);
Kfusion[7] = -t4*t13*(P[7][16]*magE-P[7][17]*magN);
Kfusion[8] = -t4*t13*(P[8][16]*magE-P[8][17]*magN);
Kfusion[9] = -t4*t13*(P[9][16]*magE-P[9][17]*magN);
if (!inhibitDelAngBiasStates) {
Kfusion[10] = -t4*t13*(P[10][16]*magE-P[10][17]*magN);
Kfusion[11] = -t4*t13*(P[11][16]*magE-P[11][17]*magN);
Kfusion[12] = -t4*t13*(P[12][16]*magE-P[12][17]*magN);
} else {
// zero indexes 10 to 12
zero_range(&Kfusion[0], 10, 12);
}
if (!inhibitDelVelBiasStates) {
for (uint8_t index = 0; index < 3; index++) {
const uint8_t stateIndex = index + 13;
if (!dvelBiasAxisInhibit[index]) {
Kfusion[stateIndex] = -t4*t13*(P[stateIndex][16]*magE-P[stateIndex][17]*magN);
} else {
Kfusion[stateIndex] = 0.0f;
}
}
} else {
// zero indexes 13 to 15
zero_range(&Kfusion[0], 13, 15);
}
if (!inhibitMagStates) {
Kfusion[16] = -t4*t13*(P[16][16]*magE-P[16][17]*magN);
Kfusion[17] = -t4*t13*(P[17][16]*magE-P[17][17]*magN);
Kfusion[18] = -t4*t13*(P[18][16]*magE-P[18][17]*magN);
Kfusion[19] = -t4*t13*(P[19][16]*magE-P[19][17]*magN);
Kfusion[20] = -t4*t13*(P[20][16]*magE-P[20][17]*magN);
Kfusion[21] = -t4*t13*(P[21][16]*magE-P[21][17]*magN);
} else {
// zero indexes 16 to 21
zero_range(&Kfusion[0], 16, 21);
}
if (!inhibitWindStates) {
Kfusion[22] = -t4*t13*(P[22][16]*magE-P[22][17]*magN);
Kfusion[23] = -t4*t13*(P[23][16]*magE-P[23][17]*magN);
} else {
// zero indexes 22 to 23
zero_range(&Kfusion[0], 22, 23);
}
// get the magnetic declination
ftype magDecAng = MagDeclination();
// Calculate the innovation
ftype innovation = atan2F(magE , magN) - magDecAng;
// limit the innovation to protect against data errors
if (innovation > 0.5f) {
innovation = 0.5f;
} else if (innovation < -0.5f) {
innovation = -0.5f;
}
// correct the covariance P = (I - K*H)*P
// take advantage of the empty columns in KH to reduce the
// number of operations
for (unsigned i = 0; i<=stateIndexLim; i++) {
for (unsigned j = 0; j<=15; j++) {
KH[i][j] = 0.0f;
}
KH[i][16] = Kfusion[i] * H_DECL[16];
KH[i][17] = Kfusion[i] * H_DECL[17];
for (unsigned j = 18; j<=23; j++) {
KH[i][j] = 0.0f;
}
}
for (unsigned j = 0; j<=stateIndexLim; j++) {
for (unsigned i = 0; i<=stateIndexLim; i++) {
KHP[i][j] = KH[i][16] * P[16][j] + KH[i][17] * P[17][j];
}
}
// Check that we are not going to drive any variances negative and skip the update if so
bool healthyFusion = true;
for (uint8_t i= 0; i<=stateIndexLim; i++) {
if (KHP[i][i] > P[i][i]) {
healthyFusion = false;
}
}
if (healthyFusion) {
// update the covariance matrix
for (uint8_t i= 0; i<=stateIndexLim; i++) {
for (uint8_t j= 0; j<=stateIndexLim; j++) {
P[i][j] = P[i][j] - KHP[i][j];
}
}
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning.
ForceSymmetry();
ConstrainVariances();
// correct the state vector
for (uint8_t j= 0; j<=stateIndexLim; j++) {
statesArray[j] = statesArray[j] - Kfusion[j] * innovation;
}
stateStruct.quat.normalize();
// record fusion health status
faultStatus.bad_decl = false;
} else {
// record fusion health status
faultStatus.bad_decl = true;
}
}
/********************************************************
* MISC FUNCTIONS *
********************************************************/
// align the NE earth magnetic field states with the published declination
void NavEKF3_core::alignMagStateDeclination()
{
// don't do this if we already have a learned magnetic field
if (magFieldLearned) {
return;
}
// get the magnetic declination
ftype magDecAng = MagDeclination();
// rotate the NE values so that the declination matches the published value
Vector3F initMagNED = stateStruct.earth_magfield;
ftype magLengthNE = initMagNED.xy().length();
stateStruct.earth_magfield.x = magLengthNE * cosF(magDecAng);
stateStruct.earth_magfield.y = magLengthNE * sinF(magDecAng);
if (!inhibitMagStates) {
// zero the corresponding state covariances if magnetic field state learning is active
ftype var_16 = P[16][16];
ftype var_17 = P[17][17];
zeroRows(P,16,17);
zeroCols(P,16,17);
P[16][16] = var_16;
P[17][17] = var_17;
// fuse the declination angle to establish covariances and prevent large swings in declination
// during initial fusion
FuseDeclination(0.1f);
}
}
// record a magnetic field state reset event
void NavEKF3_core::recordMagReset()
{
magStateResetRequest = false;
magStateInitComplete = true;
if (inFlight) {
finalInflightMagInit = true;
}
// take a snap-shot of the vertical position, quaternion and yaw innovation to use as a reference
// for post alignment checks
posDownAtLastMagReset = stateStruct.position.z;
quatAtLastMagReset = stateStruct.quat;
yawInnovAtLastMagReset = innovYaw;
}
/*
learn magnetometer biases from GPS yaw. Return true if the
resulting mag vector is close enough to the one predicted by GPS
yaw to use it for fallback
*/
bool NavEKF3_core::learnMagBiasFromGPS(void)
{
if (!have_table_earth_field) {
// we need the earth field from WMM
return false;
}
if (!inFlight) {
// don't start learning till we've started flying
return false;
}
mag_elements mag_data;
if (!storedMag.recall(mag_data, imuDataDelayed.time_ms)) {
// no mag data to correct
return false;
}
// combine yaw with current quaternion to get yaw corrected quaternion
QuaternionF quat = stateStruct.quat;
if (yawAngDataDelayed.order == rotationOrder::TAIT_BRYAN_321) {
Vector3F euler321;
quat.to_euler(euler321.x, euler321.y, euler321.z);
quat.from_euler(euler321.x, euler321.y, yawAngDataDelayed.yawAng);
} else if (yawAngDataDelayed.order == rotationOrder::TAIT_BRYAN_312) {
Vector3F euler312 = quat.to_vector312();
quat.from_vector312(euler312.x, euler312.y, yawAngDataDelayed.yawAng);
} else {
// rotation order not supported
return false;
}
// build the expected body field from orientation and table earth field
Matrix3F dcm;
quat.rotation_matrix(dcm);
Vector3F expected_body_field = dcm.transposed() * table_earth_field_ga;
// calculate error in field
Vector3F err = (expected_body_field - mag_data.mag) + stateStruct.body_magfield;
// learn body frame mag biases
stateStruct.body_magfield -= err * EK3_GPS_MAG_LEARN_RATE;
// check if error is below threshold. If it is then we can
// fallback to magnetometer on failure of external yaw
ftype err_length = err.length();
// we allow for yaw backback to compass if we have had 50 samples
// in a row below the threshold. This corresponds to 10 seconds
// for a 5Hz GPS
const uint8_t fallback_count_threshold = 50;
if (err_length > EK3_GPS_MAG_LEARN_LIMIT) {
gps_yaw_fallback_good_counter = 0;
} else if (gps_yaw_fallback_good_counter < fallback_count_threshold) {
gps_yaw_fallback_good_counter++;
}
bool ok = gps_yaw_fallback_good_counter >= fallback_count_threshold;
if (ok) {
// mark mag healthy to prevent a magTimeout when we start using it
lastHealthyMagTime_ms = imuSampleTime_ms;
}
return ok;
}
// Reset states using yaw from EKF-GSF and velocity and position from GPS
bool NavEKF3_core::EKFGSF_resetMainFilterYaw(bool emergency_reset)
{
// Don't do a reset unless permitted by the EK3_GSF_USE_MASK and EK3_GSF_RUN_MASK parameter masks
if ((yawEstimator == nullptr)
|| !(frontend->_gsfUseMask & (1U<<core_index))) {
return false;
};
// limit the number of emergency resets
if (emergency_reset && (EKFGSF_yaw_reset_count >= frontend->_gsfResetMaxCount)) {
return false;
}
ftype yawEKFGSF, yawVarianceEKFGSF;
if (EKFGSF_getYaw(yawEKFGSF, yawVarianceEKFGSF)) {
// keep roll and pitch and reset yaw
rotationOrder order;
bestRotationOrder(order);
resetQuatStateYawOnly(yawEKFGSF, yawVarianceEKFGSF, order);
// record the emergency reset event
EKFGSF_yaw_reset_request_ms = 0;
EKFGSF_yaw_reset_ms = imuSampleTime_ms;
EKFGSF_yaw_reset_count++;
if ((frontend->sources.getYawSource() == AP_NavEKF_Source::SourceYaw::GSF) ||
!use_compass() || (dal.compass().get_num_enabled() == 0)) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF3 IMU%u yaw aligned using GPS",(unsigned)imu_index);
} else {
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "EKF3 IMU%u emergency yaw reset",(unsigned)imu_index);
}
// Fail the magnetomer so it doesn't get used and pull the yaw away from the correct value
if (emergency_reset) {
allMagSensorsFailed = true;
}
// record the yaw reset event
recordYawReset();
// reset velocity and position states to GPS - if yaw is fixed then the filter should start to operate correctly
ResetVelocity(resetDataSource::DEFAULT);
ResetPosition(resetDataSource::DEFAULT);
// reset test ratios that are reported to prevent a race condition with the external state machine requesting the reset
velTestRatio = 0.0f;
posTestRatio = 0.0f;
return true;
}
return false;
}
// returns true on success and populates yaw (in radians) and yawVariance (rad^2)
bool NavEKF3_core::EKFGSF_getYaw(ftype &yaw, ftype &yawVariance) const
{
// return immediately if no yaw estimator
if (yawEstimator == nullptr) {
return false;
}
ftype velInnovLength;
if (yawEstimator->getYawData(yaw, yawVariance) &&
is_positive(yawVariance) &&
yawVariance < sq(radians(GSF_YAW_ACCURACY_THRESHOLD_DEG)) &&
(assume_zero_sideslip() || (yawEstimator->getVelInnovLength(velInnovLength) && velInnovLength < frontend->maxYawEstVelInnov))) {
return true;
}
return false;
}
void NavEKF3_core::resetQuatStateYawOnly(ftype yaw, ftype yawVariance, rotationOrder order)
{
QuaternionF quatBeforeReset = stateStruct.quat;
// check if we should use a 321 or 312 Rotation order and update the quaternion
// states using the preferred yaw definition
stateStruct.quat.inverse().rotation_matrix(prevTnb);
Vector3F eulerAngles;
if (order == rotationOrder::TAIT_BRYAN_321) {
// rolled more than pitched so use 321 rotation order
stateStruct.quat.to_euler(eulerAngles.x, eulerAngles.y, eulerAngles.z);
stateStruct.quat.from_euler(eulerAngles.x, eulerAngles.y, yaw);
} else if (order == rotationOrder::TAIT_BRYAN_312) {
// pitched more than rolled so use 312 rotation order
eulerAngles = stateStruct.quat.to_vector312();
stateStruct.quat.from_vector312(eulerAngles.x, eulerAngles.y, yaw);
} else {
// rotation order not supported
return;
}
// Update the rotation matrix
stateStruct.quat.inverse().rotation_matrix(prevTnb);
ftype deltaYaw = wrap_PI(yaw - eulerAngles.z);
// calculate the change in the quaternion state and apply it to the output history buffer
QuaternionF quat_delta = stateStruct.quat / quatBeforeReset;
StoreQuatRotate(quat_delta);
// assume tilt uncertainty split equally between roll and pitch
Vector3F angleErrVarVec = Vector3F(0.5 * tiltErrorVariance, 0.5 * tiltErrorVariance, yawVariance);
CovariancePrediction(&angleErrVarVec);
// record the yaw reset event
yawResetAngle += deltaYaw;
lastYawReset_ms = imuSampleTime_ms;
// record the yaw reset event
recordYawReset();
// clear all pending yaw reset requests
gpsYawResetRequest = false;
magYawResetRequest = false;
}