Ardupilot2/ArduCopter/Attitude.pde
Leonard Hall d5bbe6de03 Copter: remove TRIM_THROTTLE
throttle_trim is replaced by throttle_average which is initialised to
the throttle_mid parameter value at startup
2015-03-06 14:02:19 +09:00

276 lines
10 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// get_smoothing_gain - returns smoothing gain to be passed into attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth
// result is a number from 2 to 12 with 2 being very sluggish and 12 being very crisp
float get_smoothing_gain()
{
return (2.0f + (float)g.rc_feel_rp/10.0f);
}
// get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle
// returns desired angle in centi-degrees
static void get_pilot_desired_lean_angles(int16_t roll_in, int16_t pitch_in, int16_t &roll_out, int16_t &pitch_out)
{
static float _scaler = 1.0;
static int16_t _angle_max = 0;
// apply circular limit to pitch and roll inputs
float total_in = pythagorous2((float)pitch_in, (float)roll_in);
if (total_in > ROLL_PITCH_INPUT_MAX) {
float ratio = (float)ROLL_PITCH_INPUT_MAX / total_in;
roll_in *= ratio;
pitch_in *= ratio;
}
// return filtered roll if no scaling required
if (aparm.angle_max == ROLL_PITCH_INPUT_MAX) {
roll_out = roll_in;
pitch_out = pitch_in;
return;
}
// check if angle_max has been updated and redo scaler
if (aparm.angle_max != _angle_max) {
_angle_max = aparm.angle_max;
_scaler = (float)aparm.angle_max/(float)ROLL_PITCH_INPUT_MAX;
}
// convert pilot input to lean angle
roll_out = (int16_t)((float)roll_in * _scaler);
pitch_out = (int16_t)((float)pitch_in * _scaler);
}
// get_pilot_desired_heading - transform pilot's yaw input into a desired heading
// returns desired angle in centi-degrees
// To-Do: return heading as a float?
static float get_pilot_desired_yaw_rate(int16_t stick_angle)
{
// convert pilot input to the desired yaw rate
return stick_angle * g.acro_yaw_p;
}
/*************************************************************
* yaw controllers
*************************************************************/
// get_roi_yaw - returns heading towards location held in roi_WP
// should be called at 100hz
static float get_roi_yaw()
{
static uint8_t roi_yaw_counter = 0; // used to reduce update rate to 100hz
roi_yaw_counter++;
if (roi_yaw_counter >= 4) {
roi_yaw_counter = 0;
yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), roi_WP);
}
return yaw_look_at_WP_bearing;
}
static float get_look_ahead_yaw()
{
// Commanded Yaw to automatically look ahead.
if (gps.status() >= AP_GPS::GPS_OK_FIX_2D && gps.ground_speed_cm() > YAW_LOOK_AHEAD_MIN_SPEED) {
yaw_look_ahead_bearing = gps.ground_course_cd();
}
return yaw_look_ahead_bearing;
}
/*************************************************************
* throttle control
****************************************************************/
// update_thr_average - update estimated throttle required to hover (if necessary)
// should be called at 100hz
static void update_thr_average()
{
// ensure throttle_average has been initialised
if( throttle_average == 0 ) {
throttle_average = g.throttle_mid;
// update position controller
pos_control.set_throttle_hover(throttle_average);
}
// if not armed or landed exit
if (!motors.armed() || ap.land_complete) {
return;
}
// get throttle output
int16_t throttle = g.rc_3.servo_out;
// calc average throttle if we are in a level hover
if (throttle > g.throttle_min && abs(climb_rate) < 60 && labs(ahrs.roll_sensor) < 500 && labs(ahrs.pitch_sensor) < 500) {
throttle_average = throttle_average * 0.99f + (float)throttle * 0.01f;
// update position controller
pos_control.set_throttle_hover(throttle_average);
}
}
// set_throttle_takeoff - allows parents to tell throttle controller we are taking off so I terms can be cleared
static void
set_throttle_takeoff()
{
// tell position controller to reset alt target and reset I terms
pos_control.init_takeoff();
// tell motors to do a slow start
motors.slow_start(true);
}
// get_pilot_desired_throttle - transform pilot's throttle input to make cruise throttle mid stick
// used only for manual throttle modes
// returns throttle output 0 to 1000
static int16_t get_pilot_desired_throttle(int16_t throttle_control)
{
int16_t throttle_out;
int16_t mid_stick = g.rc_3.get_control_mid();
// ensure reasonable throttle values
throttle_control = constrain_int16(throttle_control,0,1000);
g.throttle_mid = constrain_int16(g.throttle_mid,300,700);
// check throttle is above, below or in the deadband
if (throttle_control < mid_stick) {
// below the deadband
throttle_out = g.throttle_min + ((float)(throttle_control-g.throttle_min))*((float)(g.throttle_mid - g.throttle_min))/((float)(mid_stick-g.throttle_min));
}else if(throttle_control > mid_stick) {
// above the deadband
throttle_out = g.throttle_mid + ((float)(throttle_control-mid_stick)) * (float)(1000-g.throttle_mid) / (float)(1000-mid_stick);
}else{
// must be in the deadband
throttle_out = g.throttle_mid;
}
return throttle_out;
}
// get_pilot_desired_climb_rate - transform pilot's throttle input to
// climb rate in cm/s. we use radio_in instead of control_in to get the full range
// without any deadzone at the bottom
static int16_t get_pilot_desired_climb_rate(int16_t throttle_control)
{
int16_t desired_rate = 0;
// throttle failsafe check
if( failsafe.radio ) {
return 0;
}
int16_t mid_stick = g.rc_3.get_control_mid();
int16_t deadband_top = mid_stick + g.throttle_deadzone;
int16_t deadband_bottom = mid_stick - g.throttle_deadzone;
// ensure a reasonable throttle value
throttle_control = constrain_int16(throttle_control,g.throttle_min,1000);
// ensure a reasonable deadzone
g.throttle_deadzone = constrain_int16(g.throttle_deadzone, 0, 400);
// check throttle is above, below or in the deadband
if (throttle_control < deadband_bottom) {
// below the deadband
desired_rate = (int32_t)g.pilot_velocity_z_max * (throttle_control-deadband_bottom) / (deadband_bottom-g.throttle_min);
}else if (throttle_control > deadband_top) {
// above the deadband
desired_rate = (int32_t)g.pilot_velocity_z_max * (throttle_control-deadband_top) / (1000-deadband_top);
}else{
// must be in the deadband
desired_rate = 0;
}
// desired climb rate for logging
desired_climb_rate = desired_rate;
return desired_rate;
}
// get_non_takeoff_throttle - a throttle somewhere between min and mid throttle which should not lead to a takeoff
static int16_t get_non_takeoff_throttle()
{
return (g.throttle_mid / 2.0f);
}
// get_throttle_pre_takeoff - convert pilot's input throttle to a throttle output before take-off
// used only for althold, loiter, hybrid flight modes
// returns throttle output 0 to 1000
static int16_t get_throttle_pre_takeoff(int16_t throttle_control)
{
int16_t throttle_out;
// exit immediately if throttle_control is zero
if (throttle_control <= 0) {
return 0;
}
// calculate mid stick and deadband
int16_t mid_stick = g.rc_3.get_control_mid();
int16_t deadband_top = mid_stick + g.throttle_deadzone;
// sanity check throttle input
throttle_control = constrain_int16(throttle_control,0,1000);
// sanity check throttle_mid
g.throttle_mid = constrain_int16(g.throttle_mid,300,700);
// sanity check throttle_min vs throttle_mid
if (g.throttle_min > get_non_takeoff_throttle()) {
return g.throttle_min;
}
// check throttle is below top of deadband
if (throttle_control < deadband_top) {
throttle_out = g.throttle_min + ((float)(throttle_control-g.throttle_min))*((float)(get_non_takeoff_throttle() - g.throttle_min))/((float)(deadband_top-g.throttle_min));
}else{
// must be in the deadband
throttle_out = get_non_takeoff_throttle();
}
return throttle_out;
}
// get_throttle_surface_tracking - hold copter at the desired distance above the ground
// returns climb rate (in cm/s) which should be passed to the position controller
static float get_throttle_surface_tracking(int16_t target_rate, float current_alt_target, float dt)
{
static uint32_t last_call_ms = 0;
float distance_error;
float velocity_correction;
float current_alt = inertial_nav.get_altitude();
uint32_t now = millis();
// reset target altitude if this controller has just been engaged
if (now - last_call_ms > SONAR_TIMEOUT_MS) {
target_sonar_alt = sonar_alt + current_alt_target - current_alt;
}
last_call_ms = now;
// adjust sonar target alt if motors have not hit their limits
if ((target_rate<0 && !motors.limit.throttle_lower) || (target_rate>0 && !motors.limit.throttle_upper)) {
target_sonar_alt += target_rate * dt;
}
// do not let target altitude get too far from current altitude above ground
// Note: the 750cm limit is perhaps too wide but is consistent with the regular althold limits and helps ensure a smooth transition
target_sonar_alt = constrain_float(target_sonar_alt,sonar_alt-pos_control.get_leash_down_z(),sonar_alt+pos_control.get_leash_up_z());
// calc desired velocity correction from target sonar alt vs actual sonar alt (remove the error already passed to Altitude controller to avoid oscillations)
distance_error = (target_sonar_alt - sonar_alt) - (current_alt_target - current_alt);
velocity_correction = distance_error * g.sonar_gain;
velocity_correction = constrain_float(velocity_correction, -THR_SURFACE_TRACKING_VELZ_MAX, THR_SURFACE_TRACKING_VELZ_MAX);
// return combined pilot climb rate + rate to correct sonar alt error
return (target_rate + velocity_correction);
}
// set_accel_throttle_I_from_pilot_throttle - smoothes transition from pilot controlled throttle to autopilot throttle
static void set_accel_throttle_I_from_pilot_throttle(int16_t pilot_throttle)
{
// shift difference between pilot's throttle and hover throttle into accelerometer I
g.pid_accel_z.set_integrator(pilot_throttle-throttle_average);
}