Ardupilot2/libraries/AP_Motors/AP_MotorsSingle.cpp

276 lines
10 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsSingle.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "AP_MotorsSingle.h"
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
// init
void AP_MotorsSingle::init(motor_frame_class frame_class, motor_frame_type frame_type)
{
// make sure 6 output channels are mapped
for (uint8_t i=0; i<6; i++) {
add_motor_num(CH_1+i);
}
// set the motor_enabled flag so that the main ESC can be calibrated like other frame types
motor_enabled[AP_MOTORS_MOT_5] = true;
motor_enabled[AP_MOTORS_MOT_6] = true;
// setup actuator scaling
for (uint8_t i=0; i<NUM_ACTUATORS; i++) {
SRV_Channels::set_angle(SRV_Channels::get_motor_function(i), AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
}
// record successful initialisation if what we setup was the desired frame_class
_flags.initialised_ok = (frame_class == MOTOR_FRAME_SINGLE);
}
// set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus)
void AP_MotorsSingle::set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type)
{
// nothing to do
}
// set update rate to motors - a value in hertz
void AP_MotorsSingle::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
uint32_t mask =
1U << AP_MOTORS_MOT_5 |
1U << AP_MOTORS_MOT_6 ;
rc_set_freq(mask, _speed_hz);
}
void AP_MotorsSingle::output_to_motors()
{
if (!_flags.initialised_ok) {
return;
}
switch (_spool_mode) {
case SHUT_DOWN:
// sends minimum values out to the motors
rc_write_angle(AP_MOTORS_MOT_1, _roll_radio_passthrough * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
rc_write_angle(AP_MOTORS_MOT_2, _pitch_radio_passthrough * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
rc_write_angle(AP_MOTORS_MOT_3, -_roll_radio_passthrough * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
rc_write_angle(AP_MOTORS_MOT_4, -_pitch_radio_passthrough * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
rc_write(AP_MOTORS_MOT_5, get_pwm_output_min());
rc_write(AP_MOTORS_MOT_6, get_pwm_output_min());
break;
case SPIN_WHEN_ARMED:
// sends output to motors when armed but not flying
for (uint8_t i=0; i<NUM_ACTUATORS; i++) {
rc_write_angle(AP_MOTORS_MOT_1+i, _spin_up_ratio * _actuator_out[i] * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
}
rc_write(AP_MOTORS_MOT_5, calc_spin_up_to_pwm());
rc_write(AP_MOTORS_MOT_6, calc_spin_up_to_pwm());
break;
case SPOOL_UP:
case THROTTLE_UNLIMITED:
case SPOOL_DOWN:
// set motor output based on thrust requests
for (uint8_t i=0; i<NUM_ACTUATORS; i++) {
rc_write_angle(AP_MOTORS_MOT_1+i, _actuator_out[i] * AP_MOTORS_SINGLE_SERVO_INPUT_RANGE);
}
rc_write(AP_MOTORS_MOT_5, calc_thrust_to_pwm(_thrust_out));
rc_write(AP_MOTORS_MOT_6, calc_thrust_to_pwm(_thrust_out));
break;
}
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsSingle::get_motor_mask()
{
uint32_t motor_mask =
1U << AP_MOTORS_MOT_1 |
1U << AP_MOTORS_MOT_2 |
1U << AP_MOTORS_MOT_3 |
1U << AP_MOTORS_MOT_4 |
1U << AP_MOTORS_MOT_5 |
1U << AP_MOTORS_MOT_6;
uint16_t mask = rc_map_mask(motor_mask);
// add parent's mask
mask |= AP_MotorsMulticopter::get_motor_mask();
return mask;
}
// sends commands to the motors
void AP_MotorsSingle::output_armed_stabilizing()
{
float roll_thrust; // roll thrust input value, +/- 1.0
float pitch_thrust; // pitch thrust input value, +/- 1.0
float yaw_thrust; // yaw thrust input value, +/- 1.0
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
float throttle_avg_max; // throttle thrust average maximum value, 0.0 - 1.0
float thrust_min_rpy; // the minimum throttle setting that will not limit the roll and pitch output
float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy
float rp_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits
float actuator_allowed = 0.0f; // amount of yaw we can fit in
float actuator[NUM_ACTUATORS]; // combined roll, pitch and yaw thrusts for each actuator
float actuator_max = 0.0f; // maximum actuator value
// apply voltage and air pressure compensation
const float compensation_gain = get_compensation_gain();
roll_thrust = _roll_in * compensation_gain;
pitch_thrust = _pitch_in * compensation_gain;
yaw_thrust = _yaw_in * compensation_gain;
throttle_thrust = get_throttle() * compensation_gain;
throttle_avg_max = _throttle_avg_max * compensation_gain;
// sanity check throttle is above zero and below current limited throttle
if (throttle_thrust <= 0.0f) {
throttle_thrust = 0.0f;
limit.throttle_lower = true;
}
if (throttle_thrust >= _throttle_thrust_max) {
throttle_thrust = _throttle_thrust_max;
limit.throttle_upper = true;
}
throttle_avg_max = constrain_float(throttle_avg_max, throttle_thrust, _throttle_thrust_max);
float rp_thrust_max = MAX(fabsf(roll_thrust), fabsf(pitch_thrust));
// calculate how much roll and pitch must be scaled to leave enough range for the minimum yaw
if (is_zero(rp_thrust_max)) {
rp_scale = 1.0f;
} else {
rp_scale = constrain_float((1.0f - MIN(fabsf(yaw_thrust), (float)_yaw_headroom/1000.0f)) / rp_thrust_max, 0.0f, 1.0f);
if (rp_scale < 1.0f) {
limit.roll_pitch = true;
}
}
actuator_allowed = 1.0f - rp_scale * rp_thrust_max;
if (fabsf(yaw_thrust) > actuator_allowed) {
yaw_thrust = constrain_float(yaw_thrust, -actuator_allowed, actuator_allowed);
limit.yaw = true;
}
// combine roll, pitch and yaw on each actuator
// front servo
actuator[0] = rp_scale * roll_thrust - yaw_thrust;
// right servo
actuator[1] = rp_scale * pitch_thrust - yaw_thrust;
// rear servo
actuator[2] = -rp_scale * roll_thrust - yaw_thrust;
// left servo
actuator[3] = -rp_scale * pitch_thrust - yaw_thrust;
// calculate the minimum thrust that doesn't limit the roll, pitch and yaw forces
thrust_min_rpy = MAX(MAX(fabsf(actuator[0]), fabsf(actuator[1])), MAX(fabsf(actuator[2]), fabsf(actuator[3])));
thr_adj = throttle_thrust - throttle_avg_max;
if (thr_adj < (thrust_min_rpy - throttle_avg_max)) {
// Throttle can't be reduced to the desired level because this would mean roll or pitch control
// would not be able to reach the desired level because of lack of thrust.
thr_adj = MIN(thrust_min_rpy, throttle_avg_max) - throttle_avg_max;
}
// calculate the throttle setting for the lift fan
_thrust_out = throttle_avg_max + thr_adj;
if (is_zero(_thrust_out)) {
limit.roll_pitch = true;
limit.yaw = true;
}
// limit thrust out for calculation of actuator gains
float thrust_out_actuator = constrain_float(MAX(_throttle_hover*0.5f,_thrust_out), 0.5f, 1.0f);
// calculate the maximum allowed actuator output and maximum requested actuator output
for (uint8_t i=0; i<NUM_ACTUATORS; i++) {
if (actuator_max > fabsf(actuator[i])) {
actuator_max = fabsf(actuator[i]);
}
}
if (actuator_max > thrust_out_actuator && !is_zero(actuator_max)) {
// roll, pitch and yaw request can not be achieved at full servo defection
// reduce roll, pitch and yaw to reduce the requested defection to maximum
limit.roll_pitch = true;
limit.yaw = true;
rp_scale = thrust_out_actuator/actuator_max;
} else {
rp_scale = 1.0f;
}
// force of a lifting surface is approximately equal to the angle of attack times the airflow velocity squared
// static thrust is proportional to the airflow velocity squared
// therefore the torque of the roll and pitch actuators should be approximately proportional to
// the angle of attack multiplied by the static thrust.
for (uint8_t i=0; i<NUM_ACTUATORS; i++) {
_actuator_out[i] = constrain_float(rp_scale*actuator[i]/thrust_out_actuator, -1.0f, 1.0f);
}
}
// output_test_seq - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsSingle::output_test_seq(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1:
// flap servo 1
rc_write(AP_MOTORS_MOT_1, pwm);
break;
case 2:
// flap servo 2
rc_write(AP_MOTORS_MOT_2, pwm);
break;
case 3:
// flap servo 3
rc_write(AP_MOTORS_MOT_3, pwm);
break;
case 4:
// flap servo 4
rc_write(AP_MOTORS_MOT_4, pwm);
break;
case 5:
// spin motor 1
rc_write(AP_MOTORS_MOT_5, pwm);
break;
case 6:
// spin motor 2
rc_write(AP_MOTORS_MOT_6, pwm);
break;
default:
// do nothing
break;
}
}