Ardupilot2/libraries/AP_WheelEncoder/AP_WheelEncoder.cpp

240 lines
7.9 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_WheelEncoder.h"
#include "WheelEncoder_Quadrature.h"
extern const AP_HAL::HAL& hal;
// table of user settable parameters
const AP_Param::GroupInfo AP_WheelEncoder::var_info[] = {
// @Param: _TYPE
// @DisplayName: WheelEncoder type
// @Description: What type of WheelEncoder is connected
// @Values: 0:None,1:Quadrature
// @User: Standard
AP_GROUPINFO("_TYPE", 0, AP_WheelEncoder, _type[0], 0),
// @Param: _SCALING
// @DisplayName: WheelEncoder scaling
// @Description: Scaling factor between sensor reading and measured distance in millimeters
// @Increment: 0.001
// @User: Standard
AP_GROUPINFO("_SCALING", 1, AP_WheelEncoder, _scaling[0], WHEELENCODER_SCALING_DEFAULT),
// @Param: _POS_X
// @DisplayName: WheelEncoder X position
// @Description: X position of the first wheel encoder in body frame. Positive X is forward of the origin
// @Units: m
// @User: Standard
AP_GROUPINFO("_POS_X", 2, AP_WheelEncoder, _pos_x[0], 0.0f),
// @Param: _POS_Y
// @DisplayName: WheelEncoder Y position
// @Description: Y position of the first wheel encoder accelerometer in body frame. Positive Y is to the right of the origin
// @Units: m
// @User: Standard
AP_GROUPINFO("_POS_Y", 3, AP_WheelEncoder, _pos_y[0], 0.0f),
// @Param: _PINA
// @DisplayName: Input Pin A
// @Description: Input Pin A
// @Values: -1:Disabled,50:PixhawkAUX1,51:PixhawkAUX2,52:PixhawkAUX3,53:PixhawkAUX4,54:PixhawkAUX5,55:PixhawkAUX6
// @User: Standard
AP_GROUPINFO("_PINA", 4, AP_WheelEncoder, _pina[0], 55),
// @Param: _PINB
// @DisplayName: Input Pin B
// @Description: Input Pin B
// @Values: -1:Disabled,50:PixhawkAUX1,51:PixhawkAUX2,52:PixhawkAUX3,53:PixhawkAUX4,54:PixhawkAUX5,55:PixhawkAUX6
// @User: Standard
AP_GROUPINFO("_PINB", 5, AP_WheelEncoder, _pinb[0], 54),
#if WHEELENCODER_MAX_INSTANCES > 1
// @Param: 2_TYPE
// @DisplayName: Second WheelEncoder type
// @Description: What type of WheelEncoder sensor is connected
// @Values: 0:None,1:Quadrature
// @User: Standard
AP_GROUPINFO("2_TYPE", 6, AP_WheelEncoder, _type[1], 0),
// @Param: 2_SCALING
// @DisplayName: WheelEncoder scaling
// @Description: Scaling factor between sensor reading and measured distance in millimeters
// @Increment: 0.001
// @User: Standard
AP_GROUPINFO("2_SCALING",7, AP_WheelEncoder, _scaling[1], WHEELENCODER_SCALING_DEFAULT),
// @Param: 2_POS_X
// @DisplayName: WheelEncoder X position
// @Description: X position of the first wheel encoder in body frame. Positive X is forward of the origin
// @Units: m
// @User: Standard
AP_GROUPINFO("2_POS_X", 8, AP_WheelEncoder, _pos_x[1], 0.0f),
// @Param: _POS_Y
// @DisplayName: WheelEncoder Y position
// @Description: Y position of the first wheel encoder accelerometer in body frame. Positive Y is to the right of the origin
// @Units: m
// @User: Standard
AP_GROUPINFO("2_POS_Y", 9, AP_WheelEncoder, _pos_y[1], 0.0f),
// @Param: 2_PINA
// @DisplayName: Second Encoder Input Pin A
// @Description: Second Encoder Input Pin A
// @Values: -1:Disabled,50:PixhawkAUX1,51:PixhawkAUX2,52:PixhawkAUX3,53:PixhawkAUX4,54:PixhawkAUX5,55:PixhawkAUX6
// @User: Standard
AP_GROUPINFO("2_PINA", 10, AP_WheelEncoder, _pina[1], 53),
// @Param: 2_PINB
// @DisplayName: Second Encoder Input Pin B
// @Description: Second Encoder Input Pin B
// @Values: -1:Disabled,50:PixhawkAUX1,51:PixhawkAUX2,52:PixhawkAUX3,53:PixhawkAUX4,54:PixhawkAUX5,55:PixhawkAUX6
// @User: Standard
AP_GROUPINFO("2_PINB", 11, AP_WheelEncoder, _pinb[1], 52),
#endif
AP_GROUPEND
};
AP_WheelEncoder::AP_WheelEncoder(void) :
num_instances(0)
{
AP_Param::setup_object_defaults(this, var_info);
// init state and drivers
memset(state,0,sizeof(state));
memset(drivers,0,sizeof(drivers));
}
// initialise the AP_WheelEncoder class.
void AP_WheelEncoder::init(void)
{
if (num_instances != 0) {
// init called a 2nd time?
return;
}
for (uint8_t i=0; i<WHEELENCODER_MAX_INSTANCES; i++) {
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
uint8_t type = _type[num_instances];
uint8_t instance = num_instances;
if (type == WheelEncoder_TYPE_QUADRATURE) {
state[instance].instance = instance;
drivers[instance] = new AP_WheelEncoder_Quadrature(*this, instance, state[instance]);
}
#endif
if (drivers[i] != nullptr) {
// we loaded a driver for this instance, so it must be
// present (although it may not be healthy)
num_instances = i+1;
}
}
}
// update WheelEncoder state for all instances. This should be called by main loop
void AP_WheelEncoder::update(void)
{
for (uint8_t i=0; i<num_instances; i++) {
if (drivers[i] != nullptr && _type[i] != WheelEncoder_TYPE_NONE) {
drivers[i]->update();
}
}
}
// check if an instance is healthy
bool AP_WheelEncoder::healthy(uint8_t instance) const
{
if (instance >= num_instances) {
return false;
}
return true;
}
// check if an instance is activated
bool AP_WheelEncoder::enabled(uint8_t instance) const
{
if (instance >= num_instances) {
return false;
}
// if no sensor type is selected, the sensor is not activated.
if (_type[instance] == WheelEncoder_TYPE_NONE) {
return false;
}
return true;
}
// get the total distance travelled in meters
Vector2f AP_WheelEncoder::get_position(uint8_t instance) const
{
// for invalid instances return zero vector
if (instance >= WHEELENCODER_MAX_INSTANCES) {
return Vector2f(0.0f, 0.0f);
}
return Vector2f(_pos_x[instance],_pos_y[instance]);
}
// get the total distance traveled in meters
float AP_WheelEncoder::get_distance(uint8_t instance) const
{
// for invalid instances return zero
if (instance >= WHEELENCODER_MAX_INSTANCES) {
return 0.0f;
}
return _scaling[instance] * state[instance].distance_count * 0.001f;
}
// get the total number of sensor reading from the encoder
uint32_t AP_WheelEncoder::get_total_count(uint8_t instance) const
{
// for invalid instances return zero
if (instance >= WHEELENCODER_MAX_INSTANCES) {
return 0;
}
return state[instance].total_count;
}
// get the total distance traveled in meters
uint32_t AP_WheelEncoder::get_error_count(uint8_t instance) const
{
// for invalid instances return zero
if (instance >= WHEELENCODER_MAX_INSTANCES) {
return 0;
}
return state[instance].error_count;
}
// get the signal quality for a sensor
float AP_WheelEncoder::get_signal_quality(uint8_t instance) const
{
// protect against divide by zero
if (state[instance].total_count == 0) {
return 0.0f;
}
return constrain_float((1.0f - ((float)state[instance].error_count / (float)state[instance].total_count)) * 100.0f, 0.0f, 100.0f);
}
// get the system time (in milliseconds) of the last update
uint32_t AP_WheelEncoder::get_last_reading_ms(uint8_t instance) const
{
// for invalid instances return zero
if (instance >= WHEELENCODER_MAX_INSTANCES) {
return 0;
}
return state[instance].last_reading_ms;
}