Ardupilot2/ArduCopter/Log.cpp

870 lines
27 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Copter.h"
#if LOGGING_ENABLED == ENABLED
// Code to Write and Read packets from DataFlash log memory
// Code to interact with the user to dump or erase logs
#if CLI_ENABLED == ENABLED
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
static const struct Menu::command log_menu_commands[] = {
{"dump", MENU_FUNC(dump_log)},
{"erase", MENU_FUNC(erase_logs)},
{"enable", MENU_FUNC(select_logs)},
{"disable", MENU_FUNC(select_logs)}
};
// A Macro to create the Menu
MENU2(log_menu, "Log", log_menu_commands, FUNCTOR_BIND(&copter, &Copter::print_log_menu, bool));
bool Copter::print_log_menu(void)
{
cliSerial->printf("logs enabled: ");
if (0 == g.log_bitmask) {
cliSerial->printf("none");
}else{
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) cliSerial->printf(" ATTITUDE_FAST");
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) cliSerial->printf(" ATTITUDE_MED");
if (g.log_bitmask & MASK_LOG_GPS) cliSerial->printf(" GPS");
if (g.log_bitmask & MASK_LOG_PM) cliSerial->printf(" PM");
if (g.log_bitmask & MASK_LOG_CTUN) cliSerial->printf(" CTUN");
if (g.log_bitmask & MASK_LOG_NTUN) cliSerial->printf(" NTUN");
if (g.log_bitmask & MASK_LOG_RCIN) cliSerial->printf(" RCIN");
if (g.log_bitmask & MASK_LOG_IMU) cliSerial->printf(" IMU");
if (g.log_bitmask & MASK_LOG_CMD) cliSerial->printf(" CMD");
if (g.log_bitmask & MASK_LOG_CURRENT) cliSerial->printf(" CURRENT");
if (g.log_bitmask & MASK_LOG_RCOUT) cliSerial->printf(" RCOUT");
if (g.log_bitmask & MASK_LOG_OPTFLOW) cliSerial->printf(" OPTFLOW");
if (g.log_bitmask & MASK_LOG_COMPASS) cliSerial->printf(" COMPASS");
if (g.log_bitmask & MASK_LOG_CAMERA) cliSerial->printf(" CAMERA");
if (g.log_bitmask & MASK_LOG_PID) cliSerial->printf(" PID");
}
cliSerial->println();
DataFlash.ListAvailableLogs(cliSerial);
return(true);
}
#if CLI_ENABLED == ENABLED
int8_t Copter::dump_log(uint8_t argc, const Menu::arg *argv)
{
int16_t dump_log_num;
uint16_t dump_log_start;
uint16_t dump_log_end;
// check that the requested log number can be read
dump_log_num = argv[1].i;
if (dump_log_num == -2) {
DataFlash.DumpPageInfo(cliSerial);
return(-1);
} else if (dump_log_num <= 0) {
cliSerial->printf("dumping all\n");
Log_Read(0, 1, 0);
return(-1);
} else if ((argc != 2) || ((uint16_t)dump_log_num > DataFlash.get_num_logs())) {
cliSerial->printf("bad log number\n");
return(-1);
}
DataFlash.get_log_boundaries(dump_log_num, dump_log_start, dump_log_end);
Log_Read((uint16_t)dump_log_num, dump_log_start, dump_log_end);
return (0);
}
#endif
int8_t Copter::erase_logs(uint8_t argc, const Menu::arg *argv)
{
in_mavlink_delay = true;
do_erase_logs();
in_mavlink_delay = false;
return 0;
}
int8_t Copter::select_logs(uint8_t argc, const Menu::arg *argv)
{
uint16_t bits;
if (argc != 2) {
cliSerial->printf("missing log type\n");
return(-1);
}
bits = 0;
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// that name as the argument to the command, and set the bit in
// bits accordingly.
//
if (!strcasecmp(argv[1].str, "all")) {
bits = ~0;
} else {
#define TARG(_s) if (!strcasecmp(argv[1].str, # _s)) bits |= MASK_LOG_ ## _s
TARG(ATTITUDE_FAST);
TARG(ATTITUDE_MED);
TARG(GPS);
TARG(PM);
TARG(CTUN);
TARG(NTUN);
TARG(RCIN);
TARG(IMU);
TARG(CMD);
TARG(CURRENT);
TARG(RCOUT);
TARG(OPTFLOW);
TARG(COMPASS);
TARG(CAMERA);
TARG(PID);
#undef TARG
}
if (!strcasecmp(argv[0].str, "enable")) {
g.log_bitmask.set_and_save(g.log_bitmask | bits);
}else{
g.log_bitmask.set_and_save(g.log_bitmask & ~bits);
}
return(0);
}
int8_t Copter::process_logs(uint8_t argc, const Menu::arg *argv)
{
log_menu.run();
return 0;
}
#endif // CLI_ENABLED
void Copter::do_erase_logs(void)
{
gcs_send_text(MAV_SEVERITY_CRITICAL, "Erasing logs\n");
DataFlash.EraseAll();
gcs_send_text(MAV_SEVERITY_CRITICAL, "Log erase complete\n");
}
#if AUTOTUNE_ENABLED == ENABLED
struct PACKED log_AutoTune {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t axis; // roll or pitch
uint8_t tune_step; // tuning PI or D up or down
float meas_target; // target achieved rotation rate
float meas_min; // maximum achieved rotation rate
float meas_max; // maximum achieved rotation rate
float new_gain_rp; // newly calculated gain
float new_gain_rd; // newly calculated gain
float new_gain_sp; // newly calculated gain
float new_ddt; // newly calculated gain
};
// Write an Autotune data packet
void Copter::Log_Write_AutoTune(uint8_t axis, uint8_t tune_step, float meas_target, float meas_min, float meas_max, float new_gain_rp, float new_gain_rd, float new_gain_sp, float new_ddt)
{
struct log_AutoTune pkt = {
LOG_PACKET_HEADER_INIT(LOG_AUTOTUNE_MSG),
time_us : hal.scheduler->micros64(),
axis : axis,
tune_step : tune_step,
meas_target : meas_target,
meas_min : meas_min,
meas_max : meas_max,
new_gain_rp : new_gain_rp,
new_gain_rd : new_gain_rd,
new_gain_sp : new_gain_sp,
new_ddt : new_ddt
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_AutoTuneDetails {
LOG_PACKET_HEADER;
uint64_t time_us;
float angle_cd; // lean angle in centi-degrees
float rate_cds; // current rotation rate in centi-degrees / second
};
// Write an Autotune data packet
void Copter::Log_Write_AutoTuneDetails(float angle_cd, float rate_cds)
{
struct log_AutoTuneDetails pkt = {
LOG_PACKET_HEADER_INIT(LOG_AUTOTUNEDETAILS_MSG),
time_us : hal.scheduler->micros64(),
angle_cd : angle_cd,
rate_cds : rate_cds
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
#endif
// Write a Current data packet
void Copter::Log_Write_Current()
{
DataFlash.Log_Write_Current(battery, (int16_t)(motors.get_throttle()));
// also write power status
DataFlash.Log_Write_Power();
}
struct PACKED log_Optflow {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t surface_quality;
float flow_x;
float flow_y;
float body_x;
float body_y;
};
// Write an optical flow packet
void Copter::Log_Write_Optflow()
{
#if OPTFLOW == ENABLED
// exit immediately if not enabled
if (!optflow.enabled()) {
return;
}
const Vector2f &flowRate = optflow.flowRate();
const Vector2f &bodyRate = optflow.bodyRate();
struct log_Optflow pkt = {
LOG_PACKET_HEADER_INIT(LOG_OPTFLOW_MSG),
time_us : hal.scheduler->micros64(),
surface_quality : optflow.quality(),
flow_x : flowRate.x,
flow_y : flowRate.y,
body_x : bodyRate.x,
body_y : bodyRate.y
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
#endif // OPTFLOW == ENABLED
}
struct PACKED log_Nav_Tuning {
LOG_PACKET_HEADER;
uint64_t time_us;
float desired_pos_x;
float desired_pos_y;
float pos_x;
float pos_y;
float desired_vel_x;
float desired_vel_y;
float vel_x;
float vel_y;
float desired_accel_x;
float desired_accel_y;
};
// Write an Nav Tuning packet
void Copter::Log_Write_Nav_Tuning()
{
const Vector3f &pos_target = pos_control.get_pos_target();
const Vector3f &vel_target = pos_control.get_vel_target();
const Vector3f &accel_target = pos_control.get_accel_target();
const Vector3f &position = inertial_nav.get_position();
const Vector3f &velocity = inertial_nav.get_velocity();
struct log_Nav_Tuning pkt = {
LOG_PACKET_HEADER_INIT(LOG_NAV_TUNING_MSG),
time_us : hal.scheduler->micros64(),
desired_pos_x : pos_target.x,
desired_pos_y : pos_target.y,
pos_x : position.x,
pos_y : position.y,
desired_vel_x : vel_target.x,
desired_vel_y : vel_target.y,
vel_x : velocity.x,
vel_y : velocity.y,
desired_accel_x : accel_target.x,
desired_accel_y : accel_target.y
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_Control_Tuning {
LOG_PACKET_HEADER;
uint64_t time_us;
int16_t throttle_in;
int16_t angle_boost;
float throttle_out;
float desired_alt;
float inav_alt;
int32_t baro_alt;
int16_t desired_sonar_alt;
int16_t sonar_alt;
int16_t desired_climb_rate;
int16_t climb_rate;
};
// Write a control tuning packet
void Copter::Log_Write_Control_Tuning()
{
struct log_Control_Tuning pkt = {
LOG_PACKET_HEADER_INIT(LOG_CONTROL_TUNING_MSG),
time_us : hal.scheduler->micros64(),
throttle_in : channel_throttle->control_in,
angle_boost : attitude_control.angle_boost(),
throttle_out : motors.get_throttle(),
desired_alt : pos_control.get_alt_target() / 100.0f,
inav_alt : inertial_nav.get_altitude() / 100.0f,
baro_alt : baro_alt,
desired_sonar_alt : (int16_t)target_sonar_alt,
sonar_alt : sonar_alt,
desired_climb_rate : (int16_t)pos_control.get_vel_target_z(),
climb_rate : climb_rate
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_Performance {
LOG_PACKET_HEADER;
uint64_t time_us;
uint16_t num_long_running;
uint16_t num_loops;
uint32_t max_time;
int16_t pm_test;
uint8_t i2c_lockup_count;
uint16_t ins_error_count;
};
// Write a performance monitoring packet
void Copter::Log_Write_Performance()
{
struct log_Performance pkt = {
LOG_PACKET_HEADER_INIT(LOG_PERFORMANCE_MSG),
time_us : hal.scheduler->micros64(),
num_long_running : perf_info_get_num_long_running(),
num_loops : perf_info_get_num_loops(),
max_time : perf_info_get_max_time(),
pm_test : pmTest1,
i2c_lockup_count : hal.i2c->lockup_count(),
ins_error_count : ins.error_count()
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
// Write an attitude packet
void Copter::Log_Write_Attitude()
{
Vector3f targets = attitude_control.angle_ef_targets();
targets.z = wrap_360_cd_float(targets.z);
DataFlash.Log_Write_Attitude(ahrs, targets);
#if OPTFLOW == ENABLED
DataFlash.Log_Write_EKF(ahrs,optflow.enabled());
#else
DataFlash.Log_Write_EKF(ahrs,false);
#endif
DataFlash.Log_Write_AHRS2(ahrs);
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
sitl.Log_Write_SIMSTATE(DataFlash);
#endif
DataFlash.Log_Write_POS(ahrs);
}
struct PACKED log_Rate {
LOG_PACKET_HEADER;
uint64_t time_us;
float control_roll;
float roll;
float roll_out;
float control_pitch;
float pitch;
float pitch_out;
float control_yaw;
float yaw;
float yaw_out;
float control_accel;
float accel;
float accel_out;
};
// Write an rate packet
void Copter::Log_Write_Rate()
{
const Vector3f &rate_targets = attitude_control.rate_bf_targets();
const Vector3f &accel_target = pos_control.get_accel_target();
struct log_Rate pkt_rate = {
LOG_PACKET_HEADER_INIT(LOG_RATE_MSG),
time_us : hal.scheduler->micros64(),
control_roll : (float)rate_targets.x,
roll : (float)(ahrs.get_gyro().x * AC_ATTITUDE_CONTROL_DEGX100),
roll_out : motors.get_roll(),
control_pitch : (float)rate_targets.y,
pitch : (float)(ahrs.get_gyro().y * AC_ATTITUDE_CONTROL_DEGX100),
pitch_out : motors.get_pitch(),
control_yaw : (float)rate_targets.z,
yaw : (float)(ahrs.get_gyro().z * AC_ATTITUDE_CONTROL_DEGX100),
yaw_out : motors.get_yaw(),
control_accel : (float)accel_target.z,
accel : (float)(-(ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f),
accel_out : motors.get_throttle()
};
DataFlash.WriteBlock(&pkt_rate, sizeof(pkt_rate));
}
struct PACKED log_MotBatt {
LOG_PACKET_HEADER;
uint64_t time_us;
float lift_max;
float bat_volt;
float bat_res;
float th_limit;
};
// Write an rate packet
void Copter::Log_Write_MotBatt()
{
#if FRAME_CONFIG != HELI_FRAME
struct log_MotBatt pkt_mot = {
LOG_PACKET_HEADER_INIT(LOG_MOTBATT_MSG),
time_us : hal.scheduler->micros64(),
lift_max : (float)(motors.get_lift_max()),
bat_volt : (float)(motors.get_batt_voltage_filt()),
bat_res : (float)(motors.get_batt_resistance()),
th_limit : (float)(motors.get_throttle_limit())
};
DataFlash.WriteBlock(&pkt_mot, sizeof(pkt_mot));
#endif
}
struct PACKED log_Startup {
LOG_PACKET_HEADER;
uint64_t time_us;
};
// Write Startup packet
void Copter::Log_Write_Startup()
{
struct log_Startup pkt = {
LOG_PACKET_HEADER_INIT(LOG_STARTUP_MSG),
time_us : hal.scheduler->micros64()
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_Event {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t id;
};
// Wrote an event packet
void Copter::Log_Write_Event(uint8_t id)
{
if (should_log(MASK_LOG_ANY)) {
struct log_Event pkt = {
LOG_PACKET_HEADER_INIT(LOG_EVENT_MSG),
time_us : hal.scheduler->micros64(),
id : id
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
}
struct PACKED log_Data_Int16t {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t id;
int16_t data_value;
};
// Write an int16_t data packet
UNUSED_FUNCTION
void Copter::Log_Write_Data(uint8_t id, int16_t value)
{
if (should_log(MASK_LOG_ANY)) {
struct log_Data_Int16t pkt = {
LOG_PACKET_HEADER_INIT(LOG_DATA_INT16_MSG),
time_us : hal.scheduler->micros64(),
id : id,
data_value : value
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
}
struct PACKED log_Data_UInt16t {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t id;
uint16_t data_value;
};
// Write an uint16_t data packet
UNUSED_FUNCTION
void Copter::Log_Write_Data(uint8_t id, uint16_t value)
{
if (should_log(MASK_LOG_ANY)) {
struct log_Data_UInt16t pkt = {
LOG_PACKET_HEADER_INIT(LOG_DATA_UINT16_MSG),
time_us : hal.scheduler->micros64(),
id : id,
data_value : value
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
}
struct PACKED log_Data_Int32t {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t id;
int32_t data_value;
};
// Write an int32_t data packet
void Copter::Log_Write_Data(uint8_t id, int32_t value)
{
if (should_log(MASK_LOG_ANY)) {
struct log_Data_Int32t pkt = {
LOG_PACKET_HEADER_INIT(LOG_DATA_INT32_MSG),
time_us : hal.scheduler->micros64(),
id : id,
data_value : value
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
}
struct PACKED log_Data_UInt32t {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t id;
uint32_t data_value;
};
// Write a uint32_t data packet
void Copter::Log_Write_Data(uint8_t id, uint32_t value)
{
if (should_log(MASK_LOG_ANY)) {
struct log_Data_UInt32t pkt = {
LOG_PACKET_HEADER_INIT(LOG_DATA_UINT32_MSG),
time_us : hal.scheduler->micros64(),
id : id,
data_value : value
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
}
struct PACKED log_Data_Float {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t id;
float data_value;
};
// Write a float data packet
UNUSED_FUNCTION
void Copter::Log_Write_Data(uint8_t id, float value)
{
if (should_log(MASK_LOG_ANY)) {
struct log_Data_Float pkt = {
LOG_PACKET_HEADER_INIT(LOG_DATA_FLOAT_MSG),
time_us : hal.scheduler->micros64(),
id : id,
data_value : value
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
}
struct PACKED log_Error {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t sub_system;
uint8_t error_code;
};
// Write an error packet
void Copter::Log_Write_Error(uint8_t sub_system, uint8_t error_code)
{
struct log_Error pkt = {
LOG_PACKET_HEADER_INIT(LOG_ERROR_MSG),
time_us : hal.scheduler->micros64(),
sub_system : sub_system,
error_code : error_code,
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
void Copter::Log_Write_Baro(void)
{
DataFlash.Log_Write_Baro(barometer);
}
struct PACKED log_ParameterTuning {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t parameter; // parameter we are tuning, e.g. 39 is CH6_CIRCLE_RATE
float tuning_value; // normalized value used inside tuning() function
int16_t control_in; // raw tune input value
int16_t tuning_low; // tuning low end value
int16_t tuning_high; // tuning high end value
};
void Copter::Log_Write_Parameter_Tuning(uint8_t param, float tuning_val, int16_t control_in, int16_t tune_low, int16_t tune_high)
{
struct log_ParameterTuning pkt_tune = {
LOG_PACKET_HEADER_INIT(LOG_PARAMTUNE_MSG),
time_us : hal.scheduler->micros64(),
parameter : param,
tuning_value : tuning_val,
control_in : control_in,
tuning_low : tune_low,
tuning_high : tune_high
};
DataFlash.WriteBlock(&pkt_tune, sizeof(pkt_tune));
}
// log EKF origin and ahrs home to dataflash
void Copter::Log_Write_Home_And_Origin()
{
// log ekf origin if set
Location ekf_orig;
if (ahrs.get_NavEKF_const().getOriginLLH(ekf_orig)) {
DataFlash.Log_Write_Origin(LogOriginType::ekf_origin, ekf_orig);
}
// log ahrs home if set
if (ap.home_state != HOME_UNSET) {
DataFlash.Log_Write_Origin(LogOriginType::ahrs_home, ahrs.get_home());
}
}
// logs when baro or compass becomes unhealthy
void Copter::Log_Sensor_Health()
{
// check baro
if (sensor_health.baro != barometer.healthy()) {
sensor_health.baro = barometer.healthy();
Log_Write_Error(ERROR_SUBSYSTEM_BARO, (sensor_health.baro ? ERROR_CODE_ERROR_RESOLVED : ERROR_CODE_UNHEALTHY));
}
// check compass
if (sensor_health.compass != compass.healthy()) {
sensor_health.compass = compass.healthy();
Log_Write_Error(ERROR_SUBSYSTEM_COMPASS, (sensor_health.compass ? ERROR_CODE_ERROR_RESOLVED : ERROR_CODE_UNHEALTHY));
}
}
struct PACKED log_Heli {
LOG_PACKET_HEADER;
uint64_t time_us;
int16_t desired_rotor_speed;
int16_t main_rotor_speed;
};
#if FRAME_CONFIG == HELI_FRAME
// Write an helicopter packet
void Copter::Log_Write_Heli()
{
struct log_Heli pkt_heli = {
LOG_PACKET_HEADER_INIT(LOG_HELI_MSG),
time_us : hal.scheduler->micros64(),
desired_rotor_speed : motors.get_desired_rotor_speed(),
main_rotor_speed : motors.get_main_rotor_speed(),
};
DataFlash.WriteBlock(&pkt_heli, sizeof(pkt_heli));
}
#endif
// precision landing logging
struct PACKED log_Precland {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t healthy;
float bf_angle_x;
float bf_angle_y;
float ef_angle_x;
float ef_angle_y;
float pos_x;
float pos_y;
};
// Write an optical flow packet
void Copter::Log_Write_Precland()
{
#if PRECISION_LANDING == ENABLED
// exit immediately if not enabled
if (!precland.enabled()) {
return;
}
const Vector2f &bf_angle = precland.last_bf_angle_to_target();
const Vector2f &ef_angle = precland.last_ef_angle_to_target();
const Vector3f &target_pos_ofs = precland.last_target_pos_offset();
struct log_Precland pkt = {
LOG_PACKET_HEADER_INIT(LOG_PRECLAND_MSG),
time_us : hal.scheduler->micros64(),
healthy : precland.healthy(),
bf_angle_x : degrees(bf_angle.x),
bf_angle_y : degrees(bf_angle.y),
ef_angle_x : degrees(ef_angle.x),
ef_angle_y : degrees(ef_angle.y),
pos_x : target_pos_ofs.x,
pos_y : target_pos_ofs.y
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
#endif // PRECISION_LANDING == ENABLED
}
const struct LogStructure Copter::log_structure[] = {
LOG_COMMON_STRUCTURES,
#if AUTOTUNE_ENABLED == ENABLED
{ LOG_AUTOTUNE_MSG, sizeof(log_AutoTune),
"ATUN", "QBBfffffff", "TimeUS,Axis,TuneStep,Targ,Min,Max,RP,RD,SP,ddt" },
{ LOG_AUTOTUNEDETAILS_MSG, sizeof(log_AutoTuneDetails),
"ATDE", "Qff", "TimeUS,Angle,Rate" },
#endif
{ LOG_PARAMTUNE_MSG, sizeof(log_ParameterTuning),
"PTUN", "QBfHHH", "TimeUS,Param,TunVal,CtrlIn,TunLo,TunHi" },
{ LOG_OPTFLOW_MSG, sizeof(log_Optflow),
"OF", "QBffff", "TimeUS,Qual,flowX,flowY,bodyX,bodyY" },
{ LOG_NAV_TUNING_MSG, sizeof(log_Nav_Tuning),
"NTUN", "Qffffffffff", "TimeUS,DPosX,DPosY,PosX,PosY,DVelX,DVelY,VelX,VelY,DAccX,DAccY" },
{ LOG_CONTROL_TUNING_MSG, sizeof(log_Control_Tuning),
"CTUN", "Qhhfffecchh", "TimeUS,ThrIn,AngBst,ThrOut,DAlt,Alt,BarAlt,DSAlt,SAlt,DCRt,CRt" },
{ LOG_PERFORMANCE_MSG, sizeof(log_Performance),
"PM", "QHHIhBH", "TimeUS,NLon,NLoop,MaxT,PMT,I2CErr,INSErr" },
{ LOG_RATE_MSG, sizeof(log_Rate),
"RATE", "Qffffffffffff", "TimeUS,RDes,R,ROut,PDes,P,POut,YDes,Y,YOut,ADes,A,AOut" },
{ LOG_MOTBATT_MSG, sizeof(log_MotBatt),
"MOTB", "Qffff", "TimeUS,LiftMax,BatVolt,BatRes,ThLimit" },
{ LOG_STARTUP_MSG, sizeof(log_Startup),
"STRT", "Q", "TimeUS" },
{ LOG_EVENT_MSG, sizeof(log_Event),
"EV", "QB", "TimeUS,Id" },
{ LOG_DATA_INT16_MSG, sizeof(log_Data_Int16t),
"D16", "QBh", "TimeUS,Id,Value" },
{ LOG_DATA_UINT16_MSG, sizeof(log_Data_UInt16t),
"DU16", "QBH", "TimeUS,Id,Value" },
{ LOG_DATA_INT32_MSG, sizeof(log_Data_Int32t),
"D32", "QBi", "TimeUS,Id,Value" },
{ LOG_DATA_UINT32_MSG, sizeof(log_Data_UInt32t),
"DU32", "QBI", "TimeUS,Id,Value" },
{ LOG_DATA_FLOAT_MSG, sizeof(log_Data_Float),
"DFLT", "QBf", "TimeUS,Id,Value" },
{ LOG_ERROR_MSG, sizeof(log_Error),
"ERR", "QBB", "TimeUS,Subsys,ECode" },
{ LOG_HELI_MSG, sizeof(log_Heli),
"HELI", "Qhh", "TimeUS,DRRPM,ERRPM" },
{ LOG_PRECLAND_MSG, sizeof(log_Precland),
"PL", "QBffffff", "TimeUS,Heal,bX,bY,eX,eY,pX,pY" },
};
#if CLI_ENABLED == ENABLED
// Read the DataFlash log memory
void Copter::Log_Read(uint16_t list_entry, uint16_t start_page, uint16_t end_page)
{
cliSerial->printf("\n" FIRMWARE_STRING
"\nFree RAM: %u\n"
"\nFrame: " FRAME_CONFIG_STRING "\n",
(unsigned) hal.util->available_memory());
cliSerial->println(HAL_BOARD_NAME);
DataFlash.LogReadProcess(list_entry, start_page, end_page,
FUNCTOR_BIND_MEMBER(&Copter::print_flight_mode, void, AP_HAL::BetterStream *, uint8_t),
cliSerial);
}
#endif // CLI_ENABLED
void Copter::Log_Write_Vehicle_Startup_Messages()
{
// only 200(?) bytes are guaranteed by DataFlash
DataFlash.Log_Write_Message("Frame: " FRAME_CONFIG_STRING);
DataFlash.Log_Write_Mode(control_mode);
}
// start a new log
void Copter::start_logging()
{
if (g.log_bitmask != 0) {
if (!ap.logging_started) {
ap.logging_started = true;
DataFlash.set_mission(&mission);
DataFlash.setVehicle_Startup_Log_Writer(FUNCTOR_BIND(&copter, &Copter::Log_Write_Vehicle_Startup_Messages, void));
DataFlash.StartNewLog();
}
// enable writes
DataFlash.EnableWrites(true);
}
}
void Copter::log_init(void)
{
DataFlash.Init(log_structure, ARRAY_SIZE(log_structure));
if (!DataFlash.CardInserted()) {
gcs_send_text(MAV_SEVERITY_CRITICAL, "No dataflash inserted");
g.log_bitmask.set(0);
} else if (DataFlash.NeedPrep()) {
gcs_send_text(MAV_SEVERITY_CRITICAL, "Preparing log system");
DataFlash.Prep();
gcs_send_text(MAV_SEVERITY_CRITICAL, "Prepared log system");
for (uint8_t i=0; i<num_gcs; i++) {
gcs[i].reset_cli_timeout();
}
}
}
#else // LOGGING_ENABLED
#if CLI_ENABLED == ENABLED
bool Copter::print_log_menu(void) { return true; }
int8_t Copter::dump_log(uint8_t argc, const Menu::arg *argv) { return 0; }
int8_t Copter::erase_logs(uint8_t argc, const Menu::arg *argv) { return 0; }
int8_t Copter::select_logs(uint8_t argc, const Menu::arg *argv) { return 0; }
int8_t Copter::process_logs(uint8_t argc, const Menu::arg *argv) { return 0; }
void Copter::Log_Read(uint16_t log_num, uint16_t start_page, uint16_t end_page) {}
#endif // CLI_ENABLED == ENABLED
void Copter::do_erase_logs(void) {}
void Copter::Log_Write_AutoTune(uint8_t axis, uint8_t tune_step, float meas_target, \
float meas_min, float meas_max, float new_gain_rp, \
float new_gain_rd, float new_gain_sp, float new_ddt) {}
void Copter::Log_Write_AutoTuneDetails(float angle_cd, float rate_cds) {}
void Copter::Log_Write_Current() {}
void Copter::Log_Write_Nav_Tuning() {}
void Copter::Log_Write_Control_Tuning() {}
void Copter::Log_Write_Performance() {}
void Copter::Log_Write_Attitude(void) {}
void Copter::Log_Write_Rate() {}
void Copter::Log_Write_MotBatt() {}
void Copter::Log_Write_Startup() {}
void Copter::Log_Write_Event(uint8_t id) {}
void Copter::Log_Write_Data(uint8_t id, int32_t value) {}
void Copter::Log_Write_Data(uint8_t id, uint32_t value) {}
void Copter::Log_Write_Data(uint8_t id, int16_t value) {}
void Copter::Log_Write_Data(uint8_t id, uint16_t value) {}
void Copter::Log_Write_Data(uint8_t id, float value) {}
void Copter::Log_Write_Error(uint8_t sub_system, uint8_t error_code) {}
void Copter::Log_Write_Baro(void) {}
void Copter::Log_Write_Parameter_Tuning(uint8_t param, float tuning_val, int16_t control_in, int16_t tune_low, int16_t tune_high) {}
void Copter::Log_Write_Home_And_Origin() {}
void Copter::Log_Sensor_Health() {}
#if FRAME_CONFIG == HELI_FRAME
void Copter::Log_Write_Heli() {}
#endif
#if OPTFLOW == ENABLED
void Copter::Log_Write_Optflow() {}
#endif
void Copter::start_logging() {}
void Copter::log_init(void) {}
#endif // LOGGING_ENABLED