Ardupilot2/libraries/AP_Mount/AP_Mount.cpp
Amilcar Lucas ab730ff919 Added camera and/or antenna mount support.
It is fully configurable with the mission planner, there is no need to change
the source code to adapt to your setup.
It needs more testing, but the SIL is not working for me.
2011-10-31 22:55:58 +01:00

297 lines
9.7 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
#include <AP_Mount.h>
extern RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions]; // the aux. servo ch. assigned to each function
AP_Mount::AP_Mount(GPS *gps, AP_DCM *dcm)
{
_dcm=dcm;
_dcm_hil=NULL;
_gps=gps;
//set_mode(MAV_MOUNT_MODE_RETRACT);
//set_mode(MAV_MOUNT_MODE_RC_TARGETING); // FIXME: This is just to test without mavlink
set_mode(MAV_MOUNT_MODE_GPS_POINT); // FIXME: this is to test ONLY targeting
_retract_angles.x=0;
_retract_angles.y=0;
_retract_angles.z=0;
}
AP_Mount::AP_Mount(GPS *gps, AP_DCM_HIL *dcm)
{
_dcm=NULL;
_dcm_hil=dcm;
_gps=gps;
//set_mode(MAV_MOUNT_MODE_RETRACT);
//set_mode(MAV_MOUNT_MODE_RC_TARGETING); // FIXME: This is just to test without mavlink
set_mode(MAV_MOUNT_MODE_MAVLINK_TARGETING); // FIXME: this is to test ONLY targeting
_retract_angles.x=0;
_retract_angles.y=0;
_retract_angles.z=0;
}
//sets the servo angles for retraction, note angles are * 100
void AP_Mount::set_retract_angles(int roll, int pitch, int yaw)
{
_retract_angles.x=roll;
_retract_angles.y=pitch;
_retract_angles.z=yaw;
}
//sets the servo angles for neutral, note angles are * 100
void AP_Mount::set_neutral_angles(int roll, int pitch, int yaw)
{
_neutral_angles.x=roll;
_neutral_angles.y=pitch;
_neutral_angles.z=yaw;
}
//sets the servo angles for MAVLink, note angles are * 100
void AP_Mount::set_mavlink_angles(int roll, int pitch, int yaw)
{
_mavlink_angles.x = roll;
_mavlink_angles.y = pitch;
_mavlink_angles.z = yaw;
}
// used to tell the mount to track GPS location
void AP_Mount::set_GPS_target_location(Location targetGPSLocation)
{
_target_GPS_location=targetGPSLocation;
}
// This one should be called periodically
void AP_Mount::update_mount_position()
{
Matrix3f m; //holds 3 x 3 matrix, var is used as temp in calcs
Vector3f targ; //holds target vector, var is used as temp in calcs
Vector3f aux_vec; //holds target vector, var is used as temp in calcs
switch(_mount_mode)
{
case MAV_MOUNT_MODE_RETRACT:
roll_angle =100*_retract_angles.x;
pitch_angle=100*_retract_angles.y;
yaw_angle =100*_retract_angles.z;
break;
case MAV_MOUNT_MODE_NEUTRAL:
roll_angle =100*_neutral_angles.x;
pitch_angle=100*_neutral_angles.y;
yaw_angle =100*_neutral_angles.z;
break;
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
{
aux_vec.x = _mavlink_angles.x;
aux_vec.y = _mavlink_angles.y;
aux_vec.z = _mavlink_angles.z;
m = _dcm?_dcm->get_dcm_transposed():_dcm_hil->get_dcm_transposed();
//rotate vector
targ = m*aux_vec;
// TODO The next three lines are probably not correct yet
roll_angle = _stab_roll? degrees(atan2( targ.y,targ.z))*100:_mavlink_angles.y; //roll
pitch_angle = _stab_pitch?degrees(atan2(-targ.x,targ.z))*100:_neutral_angles.x; //pitch
yaw_angle = _stab_yaw? degrees(atan2(-targ.x,targ.y))*100:_neutral_angles.z; //yaw
break;
}
case MAV_MOUNT_MODE_RC_TARGETING: // radio manual control
{
// TODO It does work, but maybe is a good idea to replace this simplified implementation with a proper one
if (_dcm)
{
roll_angle = -_dcm->roll_sensor;
pitch_angle = -_dcm->pitch_sensor;
yaw_angle = -_dcm->yaw_sensor;
}
if (_dcm_hil)
{
roll_angle = -_dcm_hil->roll_sensor;
pitch_angle = -_dcm_hil->pitch_sensor;
yaw_angle = -_dcm_hil->yaw_sensor;
}
if (g_rc_function[RC_Channel_aux::k_mount_roll])
roll_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_roll]);
if (g_rc_function[RC_Channel_aux::k_mount_pitch])
pitch_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_pitch]);
if (g_rc_function[RC_Channel_aux::k_mount_yaw])
yaw_angle = rc_map(g_rc_function[RC_Channel_aux::k_mount_yaw]);
break;
}
case MAV_MOUNT_MODE_GPS_POINT:
{
if(_gps->fix)
{
calc_GPS_target_vector(&_target_GPS_location);
}
m = (_dcm)?_dcm->get_dcm_transposed():_dcm_hil->get_dcm_transposed();
targ = m*_GPS_vector;
/* disable stabilization for now, this will help debug */
_stab_roll = 0;_stab_pitch=0;_stab_yaw=0;
/**/
// TODO The next three lines are probably not correct yet
roll_angle = _stab_roll? degrees(atan2( targ.y,targ.z))*100:_GPS_vector.y; //roll
pitch_angle = _stab_pitch?degrees(atan2(-targ.x,targ.z))*100:0; //pitch
yaw_angle = _stab_yaw? degrees(atan2(-targ.x,targ.y))*100:degrees(atan2(-_GPS_vector.x,_GPS_vector.y))*100; //yaw
break;
}
default:
//do nothing
break;
}
// write the results to the servos
// Change scaling to 0.1 degrees in order to avoid overflows in the angle arithmetic
G_RC_AUX(k_mount_roll)->closest_limit(roll_angle/10);
G_RC_AUX(k_mount_pitch)->closest_limit(pitch_angle/10);
G_RC_AUX(k_mount_yaw)->closest_limit(yaw_angle/10);
}
void AP_Mount::set_mode(enum MAV_MOUNT_MODE mode)
{
_mount_mode=mode;
}
void AP_Mount::configure_msg(mavlink_message_t* msg)
{
__mavlink_mount_configure_t packet;
mavlink_msg_mount_configure_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) {
// not for us
return;
}
set_mode((enum MAV_MOUNT_MODE)packet.mount_mode);
_stab_pitch = packet.stab_pitch;
_stab_roll = packet.stab_roll;
_stab_yaw = packet.stab_yaw;
}
void AP_Mount::control_msg(mavlink_message_t *msg)
{
__mavlink_mount_control_t packet;
mavlink_msg_mount_control_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) {
// not for us
return;
}
switch (_mount_mode)
{
case MAV_MOUNT_MODE_RETRACT: // Load and keep safe position (Roll,Pitch,Yaw) from EEPROM and stop stabilization
set_retract_angles(packet.input_b, packet.input_a, packet.input_c);
if (packet.save_position)
{
// TODO: Save current trimmed position on EEPROM
}
break;
case MAV_MOUNT_MODE_NEUTRAL: // Load and keep neutral position (Roll,Pitch,Yaw) from EEPROM
set_neutral_angles(packet.input_b, packet.input_a, packet.input_c);
if (packet.save_position)
{
// TODO: Save current trimmed position on EEPROM
}
break;
case MAV_MOUNT_MODE_MAVLINK_TARGETING: // Load neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization
set_mavlink_angles(packet.input_b, packet.input_a, packet.input_c);
break;
case MAV_MOUNT_MODE_RC_TARGETING: // Load neutral position and start RC Roll,Pitch,Yaw control with stabilization
break;
case MAV_MOUNT_MODE_GPS_POINT: // Load neutral position and start to point to Lat,Lon,Alt
Location targetGPSLocation;
targetGPSLocation.lat = packet.input_a;
targetGPSLocation.lng = packet.input_b;
targetGPSLocation.alt = packet.input_c;
set_GPS_target_location(targetGPSLocation);
break;
}
}
void AP_Mount::status_msg(mavlink_message_t *msg)
{
__mavlink_mount_status_t packet;
mavlink_msg_mount_status_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) {
// not for us
return;
}
switch (_mount_mode)
{
case MAV_MOUNT_MODE_RETRACT: // safe position (Roll,Pitch,Yaw) from EEPROM and stop stabilization
case MAV_MOUNT_MODE_NEUTRAL: // neutral position (Roll,Pitch,Yaw) from EEPROM
case MAV_MOUNT_MODE_MAVLINK_TARGETING: // neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization
case MAV_MOUNT_MODE_RC_TARGETING: // neutral position and start RC Roll,Pitch,Yaw control with stabilization
packet.pointing_b = roll_angle; ///< degrees*100
packet.pointing_a = pitch_angle; ///< degrees*100
packet.pointing_c = yaw_angle; ///< degrees*100
break;
case MAV_MOUNT_MODE_GPS_POINT: // neutral position and start to point to Lat,Lon,Alt
packet.pointing_a = _target_GPS_location.lat; ///< latitude
packet.pointing_b = _target_GPS_location.lng; ///< longitude
packet.pointing_c = _target_GPS_location.alt; ///< altitude
break;
}
// status reply
// TODO: is COMM_3 correct ?
mavlink_msg_mount_status_send(MAVLINK_COMM_3, packet.target_system, packet.target_component,
packet.pointing_a, packet.pointing_b, packet.pointing_c);
}
void AP_Mount::set_roi_cmd()
{
// TODO get the information out of the mission command and use it
}
void AP_Mount::configure_cmd()
{
// TODO get the information out of the mission command and use it
}
void AP_Mount::control_cmd()
{
// TODO get the information out of the mission command and use it
}
void AP_Mount::calc_GPS_target_vector(struct Location *target)
{
_GPS_vector.x = (target->lng-_gps->longitude) * cos((_gps->latitude+target->lat)/2)*.01113195;
_GPS_vector.y = (target->lat-_gps->latitude)*.01113195;
_GPS_vector.z = (_gps->altitude-target->alt);
}
void
AP_Mount::update_mount_type()
{
// Auto-detect the mount gimbal type depending on the functions assigned to the servos
if ((g_rc_function[RC_Channel_aux::k_mount_roll] == NULL) && (g_rc_function[RC_Channel_aux::k_mount_pitch] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_yaw] != NULL))
{
_mount_type = k_pan_tilt;
}
if ((g_rc_function[RC_Channel_aux::k_mount_roll] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_pitch] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_yaw] == NULL))
{
_mount_type = k_tilt_roll;
}
if ((g_rc_function[RC_Channel_aux::k_mount_roll] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_pitch] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_yaw] != NULL))
{
_mount_type = k_pan_tilt_roll;
}
}
// This function is needed to let the HIL code compile
long
AP_Mount::rc_map(RC_Channel_aux* rc_ch)
{
return (rc_ch->radio_in - rc_ch->radio_min) * (rc_ch->angle_max - rc_ch->angle_min) / (rc_ch->radio_max - rc_ch->radio_min) + rc_ch->angle_min;
}