Ardupilot2/ArduCopter/ArduCopter.pde

2508 lines
82 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define THISFIRMWARE "ArduCopter V2.7.4-Epsilon"
/*
* ArduCopter Version 2.7.4
* Lead author: Jason Short
* Based on code and ideas from the Arducopter team: Randy Mackay, Pat Hickey, Jose Julio, Jani Hirvinen, Andrew Tridgell, Justin Beech, Adam Rivera, Jean-Louis Naudin, Roberto Navoni
* Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier, Robert Lefebvre, Marco Robustini
*
* This firmware is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Special Thanks for Contributors:
*
* Hein Hollander :Octo Support
* Dani Saez :V Ocoto Support
* Max Levine :Tri Support, Graphics
* Jose Julio :Stabilization Control laws
* Randy MacKay :Heli Support
* Jani Hiriven :Testing feedback
* Andrew Tridgell :Mavlink Support
* James Goppert :Mavlink Support
* Doug Weibel :Libraries
* Mike Smith :Libraries, Coding support
* HappyKillmore :Mavlink GCS
* Michael Oborne :Mavlink GCS
* Jack Dunkle :Alpha testing
* Christof Schmid :Alpha testing
* Oliver :Piezo support
* Guntars :Arming safety suggestion
* Igor van Airde :Control Law optimization
* Jean-Louis Naudin :Auto Landing
* Sandro Benigno :Camera support
* Olivier Adler :PPM Encoder
* John Arne Birkeland :PPM Encoder
* Adam M Rivera :Auto Compass Declination
* Marco Robustini :Alpha testing
* Angel Fernandez :Alpha testing
* Robert Lefebvre :Heli Support & LEDs
* Amilcar Lucas :mount and camera configuration
* Gregory Fletcher :mount orientation math
*
* And much more so PLEASE PM me on DIYDRONES to add your contribution to the List
*
* Requires modified "mrelax" version of Arduino, which can be found here:
* http://code.google.com/p/ardupilot-mega/downloads/list
*
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
// AVR runtime
#include <avr/io.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <math.h>
// Libraries
#include <FastSerial.h>
#include <AP_Common.h>
#include <Arduino_Mega_ISR_Registry.h>
#include <APM_RC.h> // ArduPilot Mega RC Library
#include <AP_GPS.h> // ArduPilot GPS library
#include <I2C.h> // Arduino I2C lib
#include <SPI.h> // Arduino SPI lib
#include <SPI3.h> // SPI3 library
#include <AP_Semaphore.h> // for removing conflict between optical flow and dataflash on SPI3 bus
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
#include <AP_AnalogSource.h>
#include <AP_Baro.h>
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_Curve.h> // Curve used to linearlise throttle pwm to thrust
#include <AP_InertialSensor.h> // ArduPilot Mega Inertial Sensor (accel & gyro) Library
#include <AP_IMU.h> // ArduPilot Mega IMU Library
#include <AP_PeriodicProcess.h> // Parent header of Timer
// (only included for makefile libpath to work)
#include <AP_TimerProcess.h> // TimerProcess is the scheduler for MPU6000 reads.
#include <AP_AHRS.h>
#include <APM_PI.h> // PI library
#include <AC_PID.h> // PID library
#include <RC_Channel.h> // RC Channel Library
#include <AP_Motors.h> // AP Motors library
#include <AP_MotorsQuad.h> // AP Motors library for Quad
#include <AP_MotorsTri.h> // AP Motors library for Tri
#include <AP_MotorsHexa.h> // AP Motors library for Hexa
#include <AP_MotorsY6.h> // AP Motors library for Y6
#include <AP_MotorsOcta.h> // AP Motors library for Octa
#include <AP_MotorsOctaQuad.h> // AP Motors library for OctaQuad
#include <AP_MotorsHeli.h> // AP Motors library for Heli
#include <AP_MotorsMatrix.h> // AP Motors library for Heli
#include <AP_RangeFinder.h> // Range finder library
#include <AP_OpticalFlow.h> // Optical Flow library
#include <Filter.h> // Filter library
#include <ModeFilter.h> // Mode Filter from Filter library
#include <AverageFilter.h> // Mode Filter from Filter library
#include <AP_LeadFilter.h> // GPS Lead filter
#include <AP_Relay.h> // APM relay
#include <AP_Camera.h> // Photo or video camera
#include <AP_Mount.h> // Camera/Antenna mount
#include <AP_Airspeed.h> // needed for AHRS build
#include <memcheck.h>
// Configuration
#include "defines.h"
#include "config.h"
#include "config_channels.h"
#include <GCS_MAVLink.h> // MAVLink GCS definitions
// Local modules
#include "Parameters.h"
#include "GCS.h"
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library
// Limits library - Puts limits on the vehicle, and takes recovery actions
#include <AP_Limits.h>
#include <AP_Limit_GPSLock.h> // a limits library module
#include <AP_Limit_Geofence.h> // a limits library module
#include <AP_Limit_Altitude.h> // a limits library module
////////////////////////////////////////////////////////////////////////////////
// Serial ports
////////////////////////////////////////////////////////////////////////////////
//
// Note that FastSerial port buffers are allocated at ::begin time,
// so there is not much of a penalty to defining ports that we don't
// use.
//
FastSerialPort0(Serial); // FTDI/console
FastSerialPort1(Serial1); // GPS port
FastSerialPort3(Serial3); // Telemetry port
// this sets up the parameter table, and sets the default values. This
// must be the first AP_Param variable declared to ensure its
// constructor runs before the constructors of the other AP_Param
// variables
AP_Param param_loader(var_info, WP_START_BYTE);
Arduino_Mega_ISR_Registry isr_registry;
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
//
// Global parameters are all contained within the 'g' class.
//
static Parameters g;
////////////////////////////////////////////////////////////////////////////////
// prototypes
static void update_events(void);
////////////////////////////////////////////////////////////////////////////////
// RC Hardware
////////////////////////////////////////////////////////////////////////////////
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
APM_RC_APM2 APM_RC;
#else
APM_RC_APM1 APM_RC;
#endif
////////////////////////////////////////////////////////////////////////////////
// Dataflash
////////////////////////////////////////////////////////////////////////////////
AP_Semaphore spi_semaphore;
AP_Semaphore spi3_semaphore;
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
DataFlash_APM2 DataFlash(&spi3_semaphore);
#else
DataFlash_APM1 DataFlash(&spi_semaphore);
#endif
////////////////////////////////////////////////////////////////////////////////
// Sensors
////////////////////////////////////////////////////////////////////////////////
//
// There are three basic options related to flight sensor selection.
//
// - Normal flight mode. Real sensors are used.
// - HIL Attitude mode. Most sensors are disabled, as the HIL
// protocol supplies attitude information directly.
// - HIL Sensors mode. Synthetic sensors are configured that
// supply data from the simulation.
//
// All GPS access should be through this pointer.
static GPS *g_gps;
// flight modes convenience array
static AP_Int8 *flight_modes = &g.flight_mode1;
#if HIL_MODE == HIL_MODE_DISABLED
// real sensors
#if CONFIG_ADC == ENABLED
AP_ADC_ADS7844 adc;
#endif
#ifdef DESKTOP_BUILD
AP_Baro_BMP085_HIL barometer;
AP_Compass_HIL compass;
#include <SITL.h>
SITL sitl;
#else
#if CONFIG_BARO == AP_BARO_BMP085
# if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
AP_Baro_BMP085 barometer(true);
# else
AP_Baro_BMP085 barometer(false);
# endif
#elif CONFIG_BARO == AP_BARO_MS5611
AP_Baro_MS5611 barometer;
#endif
AP_Compass_HMC5843 compass;
#endif
#ifdef OPTFLOW_ENABLED
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN);
#else
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN);
#endif
#else
AP_OpticalFlow optflow;
#endif
// real GPS selection
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
AP_GPS_NMEA g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
AP_GPS_SIRF g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
AP_GPS_UBLOX g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
AP_GPS_MTK g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16
AP_GPS_MTK16 g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
AP_GPS_None g_gps_driver(NULL);
#else
#error Unrecognised GPS_PROTOCOL setting.
#endif // GPS PROTOCOL
#if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000
AP_InertialSensor_MPU6000 ins;
#else
AP_InertialSensor_Oilpan ins(&adc);
#endif
AP_IMU_INS imu(&ins);
// we don't want to use gps for yaw correction on ArduCopter, so pass
// a NULL GPS object pointer
static GPS *g_gps_null;
#if DMP_ENABLED == ENABLED && CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
AP_AHRS_MPU6000 ahrs(&imu, g_gps, &ins); // only works with APM2
#else
AP_AHRS_DCM ahrs(&imu, g_gps);
#endif
// ahrs2 object is the secondary ahrs to allow running DMP in parallel with DCM
#if SECONDARY_DMP_ENABLED == ENABLED && CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
AP_AHRS_MPU6000 ahrs2(&imu, g_gps, &ins); // only works with APM2
#endif
#elif HIL_MODE == HIL_MODE_SENSORS
// sensor emulators
AP_ADC_HIL adc;
AP_Baro_BMP085_HIL barometer;
AP_Compass_HIL compass;
AP_GPS_HIL g_gps_driver(NULL);
AP_IMU_Shim imu;
AP_AHRS_DCM ahrs(&imu, g_gps);
AP_InertialSensor_Stub ins;
static int32_t gps_base_alt;
#elif HIL_MODE == HIL_MODE_ATTITUDE
AP_ADC_HIL adc;
AP_IMU_Shim imu;
AP_AHRS_HIL ahrs(&imu, g_gps);
AP_GPS_HIL g_gps_driver(NULL);
AP_Compass_HIL compass; // never used
AP_Baro_BMP085_HIL barometer;
AP_InertialSensor_Stub ins;
#ifdef OPTFLOW_ENABLED
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
AP_OpticalFlow_ADNS3080 optflow(&spi3_semaphore,OPTFLOW_CS_PIN);
#else
AP_OpticalFlow_ADNS3080 optflow(NULL,OPTFLOW_CS_PIN);
#endif
#endif
#ifdef DESKTOP_BUILD
#include <SITL.h>
SITL sitl;
#endif
static int32_t gps_base_alt;
#else
#error Unrecognised HIL_MODE setting.
#endif // HIL MODE
// we always have a timer scheduler
AP_TimerProcess timer_scheduler;
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
GCS_MAVLINK gcs0;
GCS_MAVLINK gcs3;
////////////////////////////////////////////////////////////////////////////////
// SONAR selection
////////////////////////////////////////////////////////////////////////////////
//
ModeFilterInt16_Size5 sonar_mode_filter(2);
#if CONFIG_SONAR == ENABLED
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC
AP_AnalogSource_ADC sonar_analog_source( &adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25);
#elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN
AP_AnalogSource_Arduino sonar_analog_source(CONFIG_SONAR_SOURCE_ANALOG_PIN);
#endif
AP_RangeFinder_MaxsonarXL sonar(&sonar_analog_source, &sonar_mode_filter);
#endif
// agmatthews USERHOOKS
////////////////////////////////////////////////////////////////////////////////
// User variables
////////////////////////////////////////////////////////////////////////////////
#ifdef USERHOOK_VARIABLES
#include USERHOOK_VARIABLES
#endif
////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////
static const char* flight_mode_strings[] = {
"STABILIZE", // 0
"ACRO", // 1
"ALT_HOLD", // 2
"AUTO", // 3
"GUIDED", // 4
"LOITER", // 5
"RTL", // 6
"CIRCLE", // 7
"POSITION", // 8
"LAND", // 9
"OF_LOITER", // 10
"TOY_M", // 11
"TOY_A"
}; // 12 THOR Added for additional Fligt mode
/* Radio values
* Channel assignments
* 1 Ailerons (rudder if no ailerons)
* 2 Elevator
* 3 Throttle
* 4 Rudder (if we have ailerons)
* 5 Mode - 3 position switch
* 6 User assignable
* 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
* 8 TBD
* Each Aux channel can be configured to have any of the available auxiliary functions assigned to it.
* See libraries/RC_Channel/RC_Channel_aux.h for more information
*/
//Documentation of GLobals:
////////////////////////////////////////////////////////////////////////////////
// The GPS based velocity calculated by offsetting the Latitude and Longitude
// updated after GPS read - 5-10hz
static int16_t x_actual_speed;
static int16_t y_actual_speed;
// The difference between the desired rate of travel and the actual rate of travel
// updated after GPS read - 5-10hz
static int16_t x_rate_error;
static int16_t y_rate_error;
////////////////////////////////////////////////////////////////////////////////
// Radio
////////////////////////////////////////////////////////////////////////////////
// This is the state of the flight control system
// There are multiple states defined such as STABILIZE, ACRO,
static int8_t control_mode = STABILIZE;
// This is the state of simple mode.
// Set in the control_mode.pde file when the control switch is read
static bool do_simple = false;
// Used to maintain the state of the previous control switch position
// This is set to -1 when we need to re-read the switch
static byte oldSwitchPosition;
////////////////////////////////////////////////////////////////////////////////
// Motor Output
////////////////////////////////////////////////////////////////////////////////
// This is the array of PWM values being sent to the motors
//static int16_t motor_out[11];
// This is the array of PWM values being sent to the motors that has been lightly filtered with a simple LPF
// This was added to try and deal with biger motors
//static int16_t motor_filtered[11];
#if FRAME_CONFIG == QUAD_FRAME
#define MOTOR_CLASS AP_MotorsQuad
#endif
#if FRAME_CONFIG == TRI_FRAME
#define MOTOR_CLASS AP_MotorsTri
#endif
#if FRAME_CONFIG == HEXA_FRAME
#define MOTOR_CLASS AP_MotorsHexa
#endif
#if FRAME_CONFIG == Y6_FRAME
#define MOTOR_CLASS AP_MotorsY6
#endif
#if FRAME_CONFIG == OCTA_FRAME
#define MOTOR_CLASS AP_MotorsOcta
#endif
#if FRAME_CONFIG == OCTA_QUAD_FRAME
#define MOTOR_CLASS AP_MotorsOctaQuad
#endif
#if FRAME_CONFIG == HELI_FRAME
#define MOTOR_CLASS AP_MotorsHeli
#endif
#if FRAME_CONFIG == HELI_FRAME // helicopter constructor requires more arguments
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_8, &g.heli_servo_1, &g.heli_servo_2, &g.heli_servo_3, &g.heli_servo_4);
#elif FRAME_CONFIG == TRI_FRAME // tri constructor requires additional rc_7 argument to allow tail servo reversing
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7);
#else
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4);
#endif
////////////////////////////////////////////////////////////////////////////////
// Mavlink/HIL control
////////////////////////////////////////////////////////////////////////////////
// Used to track the GCS based control input
// Allow override of RC channel values for HIL
static int16_t rc_override[8] = {0,0,0,0,0,0,0,0};
// Status flag that tracks whether we are under GCS control
static bool rc_override_active = false;
// Status flag that tracks whether we are under GCS control
static uint32_t rc_override_fs_timer;
////////////////////////////////////////////////////////////////////////////////
// Failsafe
////////////////////////////////////////////////////////////////////////////////
// A status flag for the failsafe state
// did our throttle dip below the failsafe value?
static boolean failsafe;
////////////////////////////////////////////////////////////////////////////////
// PIDs
////////////////////////////////////////////////////////////////////////////////
// This is a convienience accessor for the IMU roll rates. It's currently the raw IMU rates
// and not the adjusted omega rates, but the name is stuck
static Vector3f omega;
// This is used to hold radio tuning values for in-flight CH6 tuning
float tuning_value;
// This will keep track of the percent of roll or pitch the user is applying
float roll_scale_d, pitch_scale_d;
////////////////////////////////////////////////////////////////////////////////
// LED output
////////////////////////////////////////////////////////////////////////////////
// status of LED based on the motor_armed variable
// Flashing indicates we are not armed
// Solid indicates Armed state
static boolean motor_light;
// Flashing indicates we are reading the GPS Strings
// Solid indicates we have full 3D lock and can navigate
static boolean GPS_light;
// This is current status for the LED lights state machine
// setting this value changes the output of the LEDs
static byte led_mode = NORMAL_LEDS;
// Blinking indicates GPS status
static byte copter_leds_GPS_blink = 0;
// Blinking indicates battery status
static byte copter_leds_motor_blink = 0;
// Navigation confirmation blinks
static int8_t copter_leds_nav_blink = 0;
////////////////////////////////////////////////////////////////////////////////
// GPS variables
////////////////////////////////////////////////////////////////////////////////
// This is used to scale GPS values for EEPROM storage
// 10^7 times Decimal GPS means 1 == 1cm
// This approximation makes calculations integer and it's easy to read
static const float t7 = 10000000.0;
// We use atan2 and other trig techniques to calaculate angles
// We need to scale the longitude up to make these calcs work
// to account for decreasing distance between lines of longitude away from the equator
static float scaleLongUp = 1;
// Sometimes we need to remove the scaling for distance calcs
static float scaleLongDown = 1;
////////////////////////////////////////////////////////////////////////////////
// Mavlink specific
////////////////////////////////////////////////////////////////////////////////
// Used by Mavlink for unknow reasons
static const float radius_of_earth = 6378100; // meters
// Used by Mavlink for unknow reasons
static const float gravity = 9.81; // meters/ sec^2
// Unions for getting byte values
union float_int {
int32_t int_value;
float float_value;
} float_int;
////////////////////////////////////////////////////////////////////////////////
// Location & Navigation
////////////////////////////////////////////////////////////////////////////////
// Status flag indicating we have data that can be used to navigate
// Set by a GPS read with 3D fix, or an optical flow read
static bool nav_ok;
// This is the angle from the copter to the "next_WP" location in degrees * 100
static int32_t target_bearing;
// Status of the Waypoint tracking mode. Options include:
// NO_NAV_MODE, WP_MODE, LOITER_MODE, CIRCLE_MODE
static byte wp_control;
// Register containing the index of the current navigation command in the mission script
static int16_t command_nav_index;
// Register containing the index of the previous navigation command in the mission script
// Used to manage the execution of conditional commands
static uint8_t prev_nav_index;
// Register containing the index of the current conditional command in the mission script
static uint8_t command_cond_index;
// Used to track the required WP navigation information
// options include
// NAV_ALTITUDE - have we reached the desired altitude?
// NAV_LOCATION - have we reached the desired location?
// NAV_DELAY - have we waited at the waypoint the desired time?
static uint8_t wp_verify_byte; // used for tracking state of navigating waypoints
// used to limit the speed ramp up of WP navigation
// Acceleration is limited to .5m/s/s
static int16_t waypoint_speed_gov;
// Used to track how many cm we are from the "next_WP" location
static int32_t long_error, lat_error;
// Are we navigating while holding a positon? This is set to false once the speed drops below 1m/s
static boolean loiter_override;
static int16_t waypoint_radius;
static int16_t control_roll;
static int16_t control_pitch;
////////////////////////////////////////////////////////////////////////////////
// Orientation
////////////////////////////////////////////////////////////////////////////////
// Convienience accessors for commonly used trig functions. These values are generated
// by the DCM through a few simple equations. They are used throughout the code where cos and sin
// would normally be used.
// The cos values are defaulted to 1 to get a decent initial value for a level state
static float cos_roll_x = 1;
static float cos_pitch_x = 1;
static float cos_yaw_x = 1;
static float sin_yaw_y;
static float sin_roll;
static float sin_pitch;
////////////////////////////////////////////////////////////////////////////////
// SIMPLE Mode
////////////////////////////////////////////////////////////////////////////////
// Used to track the orientation of the copter for Simple mode. This value is reset at each arming
// or in SuperSimple mode when the copter leaves a 20m radius from home.
static int32_t initial_simple_bearing;
////////////////////////////////////////////////////////////////////////////////
// Rate contoller targets
////////////////////////////////////////////////////////////////////////////////
static uint8_t rate_targets_frame = EARTH_FRAME; // indicates whether rate targets provided in earth or body frame
static int32_t roll_rate_target_ef = 0;
static int32_t pitch_rate_target_ef = 0;
static int32_t yaw_rate_target_ef = 0;
static int32_t roll_rate_target_bf = 0; // body frame roll rate target
static int32_t pitch_rate_target_bf = 0; // body frame pitch rate target
static int32_t yaw_rate_target_bf = 0; // body frame yaw rate target
////////////////////////////////////////////////////////////////////////////////
// ACRO Mode
////////////////////////////////////////////////////////////////////////////////
// Used to control Axis lock
int32_t roll_axis;
int32_t pitch_axis;
// Filters
AP_LeadFilter xLeadFilter; // Long GPS lag filter
AP_LeadFilter yLeadFilter; // Lat GPS lag filter
AverageFilterInt32_Size3 roll_rate_d_filter; // filtered acceleration
AverageFilterInt32_Size3 pitch_rate_d_filter; // filtered pitch acceleration
// Barometer filter
AverageFilterInt32_Size5 baro_filter; // filtered pitch acceleration
////////////////////////////////////////////////////////////////////////////////
// Circle Mode / Loiter control
////////////////////////////////////////////////////////////////////////////////
// used to determin the desired location in Circle mode
// increments at circle_rate / second
static float circle_angle;
// used to control the speed of Circle mode
// units are in radians, default is 5° per second
static const float circle_rate = 0.0872664625;
// used to track the delat in Circle Mode
static int32_t old_target_bearing;
// deg : how many times to circle * 360 for Loiter/Circle Mission command
static int16_t loiter_total;
// deg : how far we have turned around a waypoint
static int16_t loiter_sum;
// How long we should stay in Loiter Mode for mission scripting
static uint16_t loiter_time_max;
// How long have we been loitering - The start time in millis
static uint32_t loiter_time;
// The synthetic location created to make the copter do circles around a WP
static struct Location circle_WP;
////////////////////////////////////////////////////////////////////////////////
// CH7 control
////////////////////////////////////////////////////////////////////////////////
// Used to enable Jose's flip code
// when true the Roll/Pitch/Throttle control is sent to the flip state machine
static bool do_flip = false;
// Used to track the CH7 toggle state.
// When CH7 goes LOW PWM from HIGH PWM, this value will have been set true
// Allows advanced functionality to know when to execute
static boolean CH7_flag;
// This register tracks the current Mission Command index when writing
// a mission using CH7 in flight
static int8_t CH7_wp_index;
////////////////////////////////////////////////////////////////////////////////
// Battery Sensors
////////////////////////////////////////////////////////////////////////////////
// Battery Voltage of battery, initialized above threshold for filter
static float battery_voltage1 = LOW_VOLTAGE * 1.05;
// refers to the instant amp draw based on an Attopilot Current sensor
static float current_amps1;
// refers to the total amps drawn based on an Attopilot Current sensor
static float current_total1;
// Used to track if the battery is low - LED output flashes when the batt is low
static bool low_batt = false;
////////////////////////////////////////////////////////////////////////////////
// Altitude
////////////////////////////////////////////////////////////////////////////////
// The cm we are off in altitude from next_WP.alt Positive value means we are below the WP
static int32_t altitude_error;
// The cm/s we are moving up or down based on sensor data - Positive = UP
static int16_t climb_rate_actual;
// Used to dither our climb_rate over 50hz
static int16_t climb_rate_error;
// The cm/s we are moving up or down based on filtered data - Positive = UP
static int16_t climb_rate;
// The altitude as reported by Sonar in cm Values are 20 to 700 generally.
static int16_t sonar_alt;
// The climb_rate as reported by sonar in cm/s
static int16_t sonar_rate;
// The altitude as reported by Baro in cm Values can be quite high
static int32_t baro_alt;
// The climb_rate as reported by Baro in cm/s
static int16_t baro_rate;
// used to switch out of Manual Boost
static uint8_t reset_throttle_counter;
// used to track when to read sensors vs estimate alt
static boolean alt_sensor_flag;
static int16_t saved_toy_throttle;
////////////////////////////////////////////////////////////////////////////////
// flight modes
////////////////////////////////////////////////////////////////////////////////
// Flight modes are combinations of Roll/Pitch, Yaw and Throttle control modes
// Each Flight mode is a unique combination of these modes
//
// The current desired control scheme for Yaw
static byte yaw_mode;
// The current desired control scheme for roll and pitch / navigation
static byte roll_pitch_mode;
// The current desired control scheme for altitude hold
static byte throttle_mode;
////////////////////////////////////////////////////////////////////////////////
// flight specific
////////////////////////////////////////////////////////////////////////////////
// Flag for monitoring the status of flight
// We must be in the air with throttle for 5 seconds before this flag is true
// This flag is reset when we are in a manual throttle mode with 0 throttle or disarmed
static boolean takeoff_complete;
// Used to see if we have landed and if we should shut our engines - not fully implemented
static boolean land_complete = true;
// An additional throttle added to keep the copter at the same altitude when banking
static int16_t angle_boost;
// Push copter down for clean landing
static int16_t landing_boost;
// for controlling the landing throttle curve
//verifies landings
static int16_t ground_detector;
// have we reached our desired altitude brefore heading home?
static bool rtl_reached_alt;
////////////////////////////////////////////////////////////////////////////////
// Navigation general
////////////////////////////////////////////////////////////////////////////////
// The location of the copter in relation to home, updated every GPS read
static int32_t home_to_copter_bearing;
// distance between plane and home in cm
static int32_t home_distance;
// distance between plane and next_WP in cm
// is not static because AP_Camera uses it
int32_t wp_distance;
////////////////////////////////////////////////////////////////////////////////
// 3D Location vectors
////////////////////////////////////////////////////////////////////////////////
// home location is stored when we have a good GPS lock and arm the copter
// Can be reset each the copter is re-armed
static struct Location home;
// Flag for if we have g_gps lock and have set the home location
static boolean home_is_set;
// Current location of the copter
static struct Location current_loc;
// lead filtered loc
static struct Location filtered_loc;
// Next WP is the desired location of the copter - the next waypoint or loiter location
static struct Location next_WP;
// Prev WP is used to get the optimum path from one WP to the next
static struct Location prev_WP;
// Holds the current loaded command from the EEPROM for navigation
static struct Location command_nav_queue;
// Holds the current loaded command from the EEPROM for conditional scripts
static struct Location command_cond_queue;
// Holds the current loaded command from the EEPROM for guided mode
static struct Location guided_WP;
////////////////////////////////////////////////////////////////////////////////
// Crosstrack
////////////////////////////////////////////////////////////////////////////////
// deg * 100, The original angle to the next_WP when the next_WP was set
// Also used to check when we pass a WP
static int32_t original_target_bearing;
// The amount of angle correction applied to target_bearing to bring the copter back on its optimum path
static int16_t crosstrack_error;
// should we take the waypoint quickly or slow down?
static bool fast_corner;
////////////////////////////////////////////////////////////////////////////////
// Navigation Roll/Pitch functions
////////////////////////////////////////////////////////////////////////////////
// all angles are deg * 100 : target yaw angle
// The Commanded ROll from the autopilot.
static int32_t nav_roll;
// The Commanded pitch from the autopilot. negative Pitch means go forward.
static int32_t nav_pitch;
// The desired bank towards North (Positive) or South (Negative)
static int32_t auto_roll;
static int32_t auto_pitch;
// Don't be fooled by the fact that Pitch is reversed from Roll in its sign!
static int16_t nav_lat;
// The desired bank towards East (Positive) or West (Negative)
static int16_t nav_lon;
// The Commanded ROll from the autopilot based on optical flow sensor.
static int32_t of_roll;
// The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward.
static int32_t of_pitch;
static bool slow_wp = false;
////////////////////////////////////////////////////////////////////////////////
// Navigation Throttle control
////////////////////////////////////////////////////////////////////////////////
// The Commanded Throttle from the autopilot.
static int16_t nav_throttle; // 0-1000 for throttle control
// This is a simple counter to track the amount of throttle used during flight
// This could be useful later in determining and debuging current usage and predicting battery life
static uint32_t throttle_integrator;
////////////////////////////////////////////////////////////////////////////////
// Climb rate control
////////////////////////////////////////////////////////////////////////////////
// Time when we intiated command in millis - used for controlling decent rate
// Used to track the altitude offset for climbrate control
static int8_t alt_change_flag;
////////////////////////////////////////////////////////////////////////////////
// Navigation Yaw control
////////////////////////////////////////////////////////////////////////////////
// The Commanded Yaw from the autopilot.
static int32_t nav_yaw;
// A speed governer for Yaw control - limits the rate the quad can be turned by the autopilot
static int32_t auto_yaw;
// Used to manage the Yaw hold capabilities -
static bool yaw_stopped;
static uint8_t yaw_timer;
// Options include: no tracking, point at next wp, or at a target
static byte yaw_tracking = MAV_ROI_WPNEXT;
// In AP Mission scripting we have a fine level of control for Yaw
// This is our initial angle for relative Yaw movements
static int32_t command_yaw_start;
// Timer values used to control the speed of Yaw movements
static uint32_t command_yaw_start_time;
static uint16_t command_yaw_time; // how long we are turning
static int32_t command_yaw_end; // what angle are we trying to be
// how many degrees will we turn
static int32_t command_yaw_delta;
// Deg/s we should turn
static int16_t command_yaw_speed;
// Direction we will turn 1 = CW, 0 or -1 = CCW
static byte command_yaw_dir;
// Direction we will turn 1 = relative, 0 = Absolute
static byte command_yaw_relative;
// Yaw will point at this location if yaw_tracking is set to MAV_ROI_LOCATION
static struct Location target_WP;
////////////////////////////////////////////////////////////////////////////////
// Repeat Mission Scripting Command
////////////////////////////////////////////////////////////////////////////////
// The type of repeating event - Toggle a servo channel, Toggle the APM1 relay, etc
static byte event_id;
// Used to manage the timimng of repeating events
static uint32_t event_timer;
// How long to delay the next firing of event in millis
static uint16_t event_delay;
// how many times to fire : 0 = forever, 1 = do once, 2 = do twice
static int16_t event_repeat;
// per command value, such as PWM for servos
static int16_t event_value;
// the stored value used to undo commands - such as original PWM command
static int16_t event_undo_value;
////////////////////////////////////////////////////////////////////////////////
// Delay Mission Scripting Command
////////////////////////////////////////////////////////////////////////////////
static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
static uint32_t condition_start;
////////////////////////////////////////////////////////////////////////////////
// IMU variables
////////////////////////////////////////////////////////////////////////////////
// Integration time for the gyros (DCM algorithm)
// Updated with the fast loop
static float G_Dt = 0.02;
////////////////////////////////////////////////////////////////////////////////
// Inertial Navigation
////////////////////////////////////////////////////////////////////////////////
#if INERTIAL_NAV == ENABLED
// The rotated accelerometer values
static Vector3f accels_velocity;
static Vector3f accels_position;
// accels rotated to world frame
static Vector3f accels_rotated;
//static Vector3f position_error;
// error correction
static Vector3f speed_error;
// Manage accel drift
//static float z_offset;
//static Vector3f accels_scale;
#endif
////////////////////////////////////////////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////////////////////////////////////////////
// Used to manage the rate of performance logging messages
static int16_t perf_mon_counter;
// The number of GPS fixes we have had
static int16_t gps_fix_count;
// gps_watchdog checks for bad reads and if we miss 12 in a row, we stop navigating
// by lowering nav_lat and navlon to 0 gradually
static byte gps_watchdog;
// System Timers
// --------------
// Time in microseconds of main control loop
static uint32_t fast_loopTimer;
// Time in microseconds of 50hz control loop
static uint32_t fiftyhz_loopTimer = 0;
// Counters for branching from 10 hz control loop
static byte medium_loopCounter;
// Counters for branching from 3 1/3hz control loop
static byte slow_loopCounter;
// Counters for branching at 1 hz
static byte counter_one_herz;
// Counter of main loop executions. Used for performance monitoring and failsafe processing
static uint16_t mainLoop_count;
// used to track the elapsed time between GPS reads
static uint32_t nav_loopTimer;
// Delta Time in milliseconds for navigation computations, updated with every good GPS read
static float dTnav;
// Counters for branching from 4 minute control loop used to save Compass offsets
static int16_t superslow_loopCounter;
// Loiter timer - Records how long we have been in loiter
static uint32_t loiter_timer;
// disarms the copter while in Acro or Stabilize mode after 30 seconds of no flight
static uint8_t auto_disarming_counter;
// prevents duplicate GPS messages from entering system
static uint32_t last_gps_time;
// Set true if we have new PWM data to act on from the Radio
static bool new_radio_frame;
// Used to auto exit the in-flight leveler
static int16_t auto_level_counter;
// Reference to the AP relay object - APM1 only
AP_Relay relay;
// APM2 only
#if USB_MUX_PIN > 0
static bool usb_connected;
#endif
#if CLI_ENABLED == ENABLED
static int8_t setup_show (uint8_t argc, const Menu::arg *argv);
#endif
// Camera/Antenna mount tracking and stabilisation stuff
// --------------------------------------
#if MOUNT == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
AP_Mount camera_mount(&current_loc, g_gps, &ahrs, 0);
#endif
#if MOUNT2 == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
AP_Mount camera_mount2(&current_loc, g_gps, &ahrs, 1);
#endif
#if CAMERA == ENABLED
//pinMode(camtrig, OUTPUT); // these are free pins PE3(5), PH3(15), PH6(18), PB4(23), PB5(24), PL1(36), PL3(38), PA6(72), PA7(71), PK0(89), PK1(88), PK2(87), PK3(86), PK4(83), PK5(84), PK6(83), PK7(82)
#endif
////////////////////////////////////////////////////////////////////////////////
// Experimental AP_Limits library - set constraints, limits, fences, minima, maxima on various parameters
////////////////////////////////////////////////////////////////////////////////
#ifdef AP_LIMITS
AP_Limits limits;
AP_Limit_GPSLock gpslock_limit(g_gps);
AP_Limit_Geofence geofence_limit(FENCE_START_BYTE, FENCE_WP_SIZE, MAX_FENCEPOINTS, g_gps, &home, &current_loc);
AP_Limit_Altitude altitude_limit(&current_loc);
#endif
////////////////////////////////////////////////////////////////////////////////
// Top-level logic
////////////////////////////////////////////////////////////////////////////////
void setup() {
memcheck_init();
init_ardupilot();
}
void loop()
{
uint32_t timer = micros();
static bool run_50hz_loop = false;
uint16_t num_samples;
// We want this to execute fast
// ----------------------------
num_samples = imu.num_samples_available();
if (num_samples >= NUM_IMU_SAMPLES_FOR_100HZ) {
#if DEBUG_FAST_LOOP == ENABLED
Log_Write_Data(50, (int32_t)(timer - fast_loopTimer));
#endif
//PORTK |= B00010000;
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops
fast_loopTimer = timer;
// for mainloop failure monitoring
mainLoop_count++;
// Execute the fast loop
// ---------------------
fast_loop();////
// run the 50hz loop 1/2 the time
run_50hz_loop = !run_50hz_loop;
if( run_50hz_loop ) {
#if DEBUG_MED_LOOP == ENABLED
Log_Write_Data(51, (int32_t)(timer - fiftyhz_loopTimer));
#endif
// store the micros for the 50 hz timer
fiftyhz_loopTimer = timer;
// port manipulation for external timing of main loops
//PORTK |= B01000000;
// reads all of the necessary trig functions for cameras, throttle, etc.
// --------------------------------------------------------------------
update_trig();
// Rotate the Nav_lon and nav_lat vectors based on Yaw
// ---------------------------------------------------
calc_loiter_pitch_roll();
// check for new GPS messages
// --------------------------
update_GPS();
// perform 10hz tasks
// ------------------
medium_loop();
// Stuff to run at full 50hz, but after the med loops
// --------------------------------------------------
fifty_hz_loop();
counter_one_herz++;
// trgger our 1 hz loop
if(counter_one_herz >= 50) {
super_slow_loop();
counter_one_herz = 0;
}
perf_mon_counter++;
if (perf_mon_counter > 600 ) {
if (g.log_bitmask & MASK_LOG_PM)
Log_Write_Performance();
gps_fix_count = 0;
perf_mon_counter = 0;
}
//PORTK &= B10111111;
}
} else {
#ifdef DESKTOP_BUILD
usleep(1000);
#endif
if (num_samples < NUM_IMU_SAMPLES_FOR_100HZ-1) {
// we have some spare cycles available
// less than 20ms has passed. We have at least one millisecond
// of free time. The most useful thing to do with that time is
// to accumulate some sensor readings, specifically the
// compass, which is often very noisy but is not interrupt
// driven, so it can't accumulate readings by itself
if (g.compass_enabled) {
compass.accumulate();
}
}
}
// port manipulation for external timing of main loops
//PORTK &= B11101111;
}
// PORTK |= B01000000;
// PORTK &= B10111111;
// Main loop - 100hz
static void fast_loop()
{
// try to send any deferred messages if the serial port now has
// some space available
gcs_send_message(MSG_RETRY_DEFERRED);
// run low level rate controllers that only require IMU data
run_rate_controllers();
// write out the servo PWM values
// ------------------------------
set_servos_4();
// Read radio
// ----------
read_radio();
// IMU DCM Algorithm
// --------------------
read_AHRS();
// Inertial Nav
// --------------------
#if INERTIAL_NAV == ENABLED
calc_inertia();
#endif
// optical flow
// --------------------
#ifdef OPTFLOW_ENABLED
if(g.optflow_enabled) {
update_optical_flow();
}
#endif
// custom code/exceptions for flight modes
// ---------------------------------------
update_yaw_mode();
update_roll_pitch_mode();
// update targets to rate controllers
update_rate_contoller_targets();
// agmatthews - USERHOOKS
#ifdef USERHOOK_FASTLOOP
USERHOOK_FASTLOOP
#endif
}
static void medium_loop()
{
// This is the start of the medium (10 Hz) loop pieces
// -----------------------------------------
switch(medium_loopCounter) {
// This case deals with the GPS and Compass
//-----------------------------------------
case 0:
medium_loopCounter++;
#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode
if(g.compass_enabled) {
if (compass.read()) {
compass.null_offsets();
}
}
#endif
// auto_trim, uses an auto_level algorithm
auto_trim();
// record throttle output
// ------------------------------
throttle_integrator += g.rc_3.servo_out;
break;
// This case performs some navigation computations
//------------------------------------------------
case 1:
medium_loopCounter++;
// calculate the copter's desired bearing and WP distance
// ------------------------------------------------------
if(nav_ok) {
// clear nav flag
nav_ok = false;
// calculate distance, angles to target
navigate();
// update flight control system
update_navigation();
// update log
if (g.log_bitmask & MASK_LOG_NTUN && motors.armed()) {
Log_Write_Nav_Tuning();
}
}
break;
// command processing
//-------------------
case 2:
medium_loopCounter++;
if(control_mode == TOY_A) {
update_toy_throttle();
if(throttle_mode == THROTTLE_AUTO) {
update_toy_altitude();
}
}
alt_sensor_flag = true;
break;
// This case deals with sending high rate telemetry
//-------------------------------------------------
case 3:
medium_loopCounter++;
// perform next command
// --------------------
if(control_mode == AUTO) {
if(home_is_set == true && g.command_total > 1) {
update_commands();
}
}
if(motors.armed()) {
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) {
Log_Write_Attitude();
#if SECONDARY_DMP_ENABLED == ENABLED
Log_Write_DMP();
#endif
}
if (g.log_bitmask & MASK_LOG_MOTORS)
Log_Write_Motors();
}
break;
// This case controls the slow loop
//---------------------------------
case 4:
medium_loopCounter = 0;
if (g.battery_monitoring != 0) {
read_battery();
}
// Accel trims = hold > 2 seconds
// Throttle cruise = switch less than 1 second
// --------------------------------------------
read_trim_switch();
// Check for engine arming
// -----------------------
arm_motors();
// agmatthews - USERHOOKS
#ifdef USERHOOK_MEDIUMLOOP
USERHOOK_MEDIUMLOOP
#endif
#if COPTER_LEDS == ENABLED
update_copter_leds();
#endif
slow_loop();
break;
default:
// this is just a catch all
// ------------------------
medium_loopCounter = 0;
break;
}
}
// stuff that happens at 50 hz
// ---------------------------
static void fifty_hz_loop()
{
// read altitude sensors or estimate altitude
// ------------------------------------------
update_altitude_est();
// Update the throttle ouput
// -------------------------
update_throttle_mode();
// Read Sonar
// ----------
# if CONFIG_SONAR == ENABLED
if(g.sonar_enabled) {
sonar_alt = sonar.read();
}
#endif
#if TOY_EDF == ENABLED
edf_toy();
#endif
#ifdef USERHOOK_50HZLOOP
USERHOOK_50HZLOOP
#endif
#if HIL_MODE != HIL_MODE_DISABLED && FRAME_CONFIG != HELI_FRAME
// HIL for a copter needs very fast update of the servo values
gcs_send_message(MSG_RADIO_OUT);
#endif
#if MOUNT == ENABLED
// update camera mount's position
camera_mount.update_mount_position();
#endif
#if MOUNT2 == ENABLED
// update camera mount's position
camera_mount2.update_mount_position();
#endif
#if CAMERA == ENABLED
g.camera.trigger_pic_cleanup();
#endif
# if HIL_MODE == HIL_MODE_DISABLED
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST && motors.armed()) {
Log_Write_Attitude();
#if SECONDARY_DMP_ENABLED == ENABLED
Log_Write_DMP();
#endif
}
if (g.log_bitmask & MASK_LOG_RAW && motors.armed())
Log_Write_Raw();
#endif
// kick the GCS to process uplink data
gcs_update();
gcs_data_stream_send();
}
static void slow_loop()
{
#if AP_LIMITS == ENABLED
// Run the AP_Limits main loop
limits_loop();
#endif // AP_LIMITS_ENABLED
// This is the slow (3 1/3 Hz) loop pieces
//----------------------------------------
switch (slow_loopCounter) {
case 0:
slow_loopCounter++;
superslow_loopCounter++;
if(superslow_loopCounter > 1200) {
#if HIL_MODE != HIL_MODE_ATTITUDE
if(g.rc_3.control_in == 0 && control_mode == STABILIZE && g.compass_enabled) {
compass.save_offsets();
superslow_loopCounter = 0;
}
#endif
}
if(motors.armed()) {
if (g.log_bitmask & MASK_LOG_ITERM)
Log_Write_Iterm();
}else{
// check the user hasn't updated the frame orientation
motors.set_frame_orientation(g.frame_orientation);
}
break;
case 1:
slow_loopCounter++;
// Read 3-position switch on radio
// -------------------------------
read_control_switch();
#if MOUNT == ENABLED
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_10, &g.rc_11);
#endif
enable_aux_servos();
#if MOUNT == ENABLED
camera_mount.update_mount_type();
#endif
#if MOUNT2 == ENABLED
camera_mount2.update_mount_type();
#endif
// agmatthews - USERHOOKS
#ifdef USERHOOK_SLOWLOOP
USERHOOK_SLOWLOOP
#endif
break;
case 2:
slow_loopCounter = 0;
update_events();
// blink if we are armed
update_lights();
if(g.radio_tuning > 0)
tuning();
#if USB_MUX_PIN > 0
check_usb_mux();
#endif
break;
default:
slow_loopCounter = 0;
break;
}
}
#define AUTO_DISARMING_DELAY 25
// 1Hz loop
static void super_slow_loop()
{
if (g.log_bitmask & MASK_LOG_CUR && motors.armed())
Log_Write_Current();
#if 0 //CENTER_THROTTLE == 1
// recalibrate the throttle_cruise to center on the sticks
g.rc_3.set_range((g.throttle_cruise - (MAXIMUM_THROTTLE - g.throttle_cruise)), MAXIMUM_THROTTLE);
g.rc_3.set_range_out(0,1000);
#endif
// this function disarms the copter if it has been sitting on the ground for any moment of time greater than 25 seconds
// but only of the control mode is manual
if((control_mode <= ACRO) && (g.rc_3.control_in == 0)) {
auto_disarming_counter++;
if(auto_disarming_counter == AUTO_DISARMING_DELAY) {
init_disarm_motors();
}else if (auto_disarming_counter > AUTO_DISARMING_DELAY) {
auto_disarming_counter = AUTO_DISARMING_DELAY + 1;
}
}else{
auto_disarming_counter = 0;
}
gcs_send_message(MSG_HEARTBEAT);
// agmatthews - USERHOOKS
#ifdef USERHOOK_SUPERSLOWLOOP
USERHOOK_SUPERSLOWLOOP
#endif
/*
* //Serial.printf("alt %d, next.alt %d, alt_err: %d, cruise: %d, Alt_I:%1.2f, wp_dist %d, tar_bear %d, home_d %d, homebear %d\n",
* current_loc.alt,
* next_WP.alt,
* altitude_error,
* g.throttle_cruise.get(),
* g.pi_alt_hold.get_integrator(),
* wp_distance,
* target_bearing,
* home_distance,
* home_to_copter_bearing);
*/
}
// called at 100hz but data from sensor only arrives at 20 Hz
#ifdef OPTFLOW_ENABLED
static void update_optical_flow(void)
{
static uint32_t last_of_update = 0;
static int log_counter = 0;
// if new data has arrived, process it
if( optflow.last_update != last_of_update ) {
last_of_update = optflow.last_update;
optflow.update_position(ahrs.roll, ahrs.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow
// write to log at 5hz
log_counter++;
if( log_counter >= 4 ) {
log_counter = 0;
if (g.log_bitmask & MASK_LOG_OPTFLOW) {
Log_Write_Optflow();
}
}
}
}
#endif
// called at 50hz
static void update_GPS(void)
{
// A counter that is used to grab at least 10 reads before commiting the Home location
static byte ground_start_count = 10;
g_gps->update();
update_GPS_light();
if (gps_watchdog < 30) {
gps_watchdog++;
}else{
// after 12 reads we guess we may have lost GPS signal, stop navigating
// we have lost GPS signal for a moment. Reduce our error to avoid flyaways
auto_roll >>= 1;
auto_pitch >>= 1;
}
if (g_gps->new_data && g_gps->fix) {
// clear new data flag
g_gps->new_data = false;
// check for duiplicate GPS messages
if(last_gps_time != g_gps->time) {
// look for broken GPS
// ---------------
gps_watchdog = 0;
// OK to run the nav routines
// ---------------
nav_ok = true;
// for performance monitoring
// --------------------------
gps_fix_count++;
// used to calculate speed in X and Y, iterms
// ------------------------------------------
dTnav = (float)(millis() - nav_loopTimer)/ 1000.0;
nav_loopTimer = millis();
// prevent runup from bad GPS
// --------------------------
dTnav = min(dTnav, 1.0);
if(ground_start_count > 1) {
ground_start_count--;
} else if (ground_start_count == 1) {
// We countdown N number of good GPS fixes
// so that the altitude is more accurate
// -------------------------------------
if (current_loc.lat == 0) {
ground_start_count = 5;
}else{
if (g.compass_enabled) {
// Set compass declination automatically
compass.set_initial_location(g_gps->latitude, g_gps->longitude);
}
// save home to eeprom (we must have a good fix to have reached this point)
init_home();
ground_start_count = 0;
}
}
current_loc.lng = g_gps->longitude; // Lon * 10^7
current_loc.lat = g_gps->latitude; // Lat * 10^7
calc_XY_velocity();
if (g.log_bitmask & MASK_LOG_GPS && motors.armed()) {
Log_Write_GPS();
}
#if HIL_MODE == HIL_MODE_ATTITUDE // only execute in HIL mode
//update_altitude();
alt_sensor_flag = true;
#endif
}
// save GPS time so we don't get duplicate reads
last_gps_time = g_gps->time;
}
}
void update_yaw_mode(void)
{
switch(yaw_mode) {
case YAW_ACRO:
if(g.axis_enabled) {
nav_yaw += (float)g.rc_4.control_in * g.axis_lock_p;
nav_yaw = wrap_360(nav_yaw);
if (g.rc_3.control_in == 0) {
nav_yaw = ahrs.yaw_sensor;
}
get_stabilize_yaw(nav_yaw);
}else{
get_acro_yaw(g.rc_4.control_in);
}
return;
break;
// update to allow external roll/yaw mixing
#if TOY_LOOKUP == TOY_EXTERNAL_MIXER
case YAW_TOY:
#endif
case YAW_HOLD:
get_yaw_rate_stabilized_ef(g.rc_4.control_in);
break;
case YAW_LOOK_AT_HOME:
//nav_yaw updated in update_navigation()
get_stabilize_yaw(nav_yaw);
break;
case YAW_AUTO:
nav_yaw += constrain(wrap_180(auto_yaw - nav_yaw), -60, 60); // 40 deg a second
//Serial.printf("nav_yaw %d ", nav_yaw);
nav_yaw = wrap_360(nav_yaw);
get_stabilize_yaw(nav_yaw);
break;
}
}
void update_roll_pitch_mode(void)
{
if (do_flip) {
if(abs(g.rc_1.control_in) < 4000) {
roll_flip();
return;
}else{
// force an exit from the loop if we are not hands off sticks.
do_flip = false;
}
}
switch(roll_pitch_mode) {
case ROLL_PITCH_ACRO:
if(g.axis_enabled) {
roll_axis += (float)g.rc_1.control_in * g.axis_lock_p;
pitch_axis += (float)g.rc_2.control_in * g.axis_lock_p;
roll_axis = wrap_180(roll_axis);
pitch_axis = wrap_180(pitch_axis);
if (g.rc_3.control_in == 0) {
roll_axis = 0;
pitch_axis = 0;
}
// in this mode, nav_roll and nav_pitch = the iterm
get_stabilize_roll(roll_axis);
get_stabilize_pitch(pitch_axis);
}else{
// ACRO does not get SIMPLE mode ability
#if FRAME_CONFIG == HELI_FRAME
if (motors.flybar_mode == 1) {
g.rc_1.servo_out = g.rc_1.control_in;
g.rc_2.servo_out = g.rc_2.control_in;
} else {
get_acro_roll(g.rc_1.control_in);
get_acro_pitch(g.rc_2.control_in);
}
#else
get_acro_roll(g.rc_1.control_in);
get_acro_pitch(g.rc_2.control_in);
#endif
}
break;
case ROLL_PITCH_STABLE:
// apply SIMPLE mode transform
if(do_simple && new_radio_frame) {
update_simple_mode();
}
control_roll = g.rc_1.control_in;
control_pitch = g.rc_2.control_in;
// in this mode, nav_roll and nav_pitch = the iterm
get_stabilize_roll(control_roll);
get_stabilize_pitch(control_pitch);
break;
case ROLL_PITCH_AUTO:
// apply SIMPLE mode transform
if(do_simple && new_radio_frame) {
update_simple_mode();
}
// mix in user control with Nav control
nav_roll += constrain(wrap_180(auto_roll - nav_roll), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
nav_pitch += constrain(wrap_180(auto_pitch - nav_pitch), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
control_roll = g.rc_1.control_mix(nav_roll);
control_pitch = g.rc_2.control_mix(nav_pitch);
get_stabilize_roll(control_roll);
get_stabilize_pitch(control_pitch);
break;
case ROLL_PITCH_STABLE_OF:
// apply SIMPLE mode transform
if(do_simple && new_radio_frame) {
update_simple_mode();
}
control_roll = g.rc_1.control_in;
control_pitch = g.rc_2.control_in;
// mix in user control with optical flow
get_stabilize_roll(get_of_roll(control_roll));
get_stabilize_pitch(get_of_pitch(control_pitch));
break;
// THOR
// a call out to the main toy logic
case ROLL_PITCH_TOY:
roll_pitch_toy();
break;
}
if(g.rc_3.control_in == 0 && control_mode <= ACRO) {
reset_rate_I();
reset_stability_I();
}
//if(takeoff_complete == false){
// reset these I terms to prevent awkward tipping on takeoff
//reset_rate_I();
//reset_stability_I();
//}
if(new_radio_frame) {
// clear new radio frame info
new_radio_frame = false;
// These values can be used to scale the PID gains
// This allows for a simple gain scheduling implementation
roll_scale_d = g.stabilize_d_schedule * (float)abs(g.rc_1.control_in);
roll_scale_d = (1 - (roll_scale_d / 4500.0));
roll_scale_d = constrain(roll_scale_d, 0, 1) * g.stabilize_d;
pitch_scale_d = g.stabilize_d_schedule * (float)abs(g.rc_2.control_in);
pitch_scale_d = (1 - (pitch_scale_d / 4500.0));
pitch_scale_d = constrain(pitch_scale_d, 0, 1) * g.stabilize_d;
}
}
// new radio frame is used to make sure we only call this at 50hz
void update_simple_mode(void)
{
static byte simple_counter = 0; // State machine counter for Simple Mode
static float simple_sin_y=0, simple_cos_x=0;
// used to manage state machine
// which improves speed of function
simple_counter++;
int16_t delta = wrap_360(ahrs.yaw_sensor - initial_simple_bearing)/100;
if (simple_counter == 1) {
// roll
simple_cos_x = sin(radians(90 - delta));
}else if (simple_counter > 2) {
// pitch
simple_sin_y = cos(radians(90 - delta));
simple_counter = 0;
}
// Rotate input by the initial bearing
int16_t _roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y;
int16_t _pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x);
g.rc_1.control_in = _roll;
g.rc_2.control_in = _pitch;
}
#define THROTTLE_FILTER_SIZE 2
// 50 hz update rate
// controls all throttle behavior
void update_throttle_mode(void)
{
if(do_flip) // this is pretty bad but needed to flip in AP modes.
return;
int16_t throttle_out;
#if AUTO_THROTTLE_HOLD != 0
static float throttle_avg = 0; // this is initialised to g.throttle_cruise later
#endif
#if FRAME_CONFIG != HELI_FRAME
// calculate angle boost
if(throttle_mode == THROTTLE_MANUAL) {
angle_boost = get_angle_boost(g.rc_3.control_in);
}else{
angle_boost = get_angle_boost(g.throttle_cruise);
}
#endif
switch(throttle_mode) {
case THROTTLE_MANUAL:
if (g.rc_3.control_in > 0) {
#if FRAME_CONFIG == HELI_FRAME
g.rc_3.servo_out = heli_get_angle_boost(g.rc_3.control_in);
#else
if (control_mode == ACRO) {
g.rc_3.servo_out = g.rc_3.control_in;
}else{
g.rc_3.servo_out = g.rc_3.control_in + angle_boost;
}
#endif
#if AUTO_THROTTLE_HOLD != 0
// ensure throttle_avg has been initialised
if( throttle_avg == 0 ) {
throttle_avg = g.throttle_cruise;
}
// calc average throttle
if ((g.rc_3.control_in > g.throttle_min) && abs(climb_rate) < 60) {
throttle_avg = throttle_avg * .99 + (float)g.rc_3.control_in * .01;
g.throttle_cruise = throttle_avg;
}
#endif
if (takeoff_complete == false && motors.armed()) {
if (g.rc_3.control_in > g.throttle_cruise) {
// we must be in the air by now
takeoff_complete = true;
}
}
}else{
// make sure we also request 0 throttle out
// so the props stop ... properly
// ----------------------------------------
g.rc_3.servo_out = 0;
}
break;
case THROTTLE_HOLD:
// allow interactive changing of atitude
if(g.rc_3.radio_in < (g.rc_3.radio_min + 200)){
int16_t _rate = 120 - (((g.rc_3.radio_in - g.rc_3.radio_min) * 12) / 20);
reset_throttle_counter = 150;
nav_throttle = get_throttle_rate(-_rate);
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost;
break;
}else if(g.rc_3.radio_in > (g.rc_3.radio_max - 200)){
int16_t _rate = 180 - ((g.rc_3.radio_max - g.rc_3.radio_in) * 18) / 20;
reset_throttle_counter = 150;
nav_throttle = get_throttle_rate(_rate);
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost;
break;
}
// allow 1 second of slow down after pilot moves throttle back into deadzone
if(reset_throttle_counter > 0) {
reset_throttle_counter--;
// if 1 second has passed set the target altitude to the current altitude
if(reset_throttle_counter == 0) {
force_new_altitude(max(current_loc.alt, 100));
}else{
nav_throttle = get_throttle_rate(0);
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost;
break;
}
}
// else fall through
case THROTTLE_AUTO:
if(motors.auto_armed() == true) {
// how far off are we
altitude_error = get_altitude_error();
int16_t desired_speed;
if(alt_change_flag == REACHED_ALT) { // we are at or above the target alt
desired_speed = g.pi_alt_hold.get_p(altitude_error); // calculate desired speed from lon error
update_throttle_cruise(g.pi_alt_hold.get_i(altitude_error, .02));
desired_speed = constrain(desired_speed, -250, 250);
nav_throttle = get_throttle_rate(desired_speed);
}else{
desired_speed = get_desired_climb_rate();
nav_throttle = get_throttle_rate(desired_speed);
}
}
// hack to remove the influence of the ground effect
if(g.sonar_enabled && current_loc.alt < 100 && landing_boost != 0) {
nav_throttle = min(nav_throttle, 0);
}
#if FRAME_CONFIG == HELI_FRAME
throttle_out = heli_get_angle_boost(g.throttle_cruise + nav_throttle - landing_boost);
#else
throttle_out = g.throttle_cruise + nav_throttle + angle_boost - landing_boost;
#endif
g.rc_3.servo_out = throttle_out;
break;
}
}
// called after a GPS read
static void update_navigation()
{
// wp_distance is in CM
// --------------------
switch(control_mode) {
case AUTO:
// note: wp_control is handled by commands_logic
verify_commands();
// calculates desired Yaw
update_auto_yaw();
// calculates the desired Roll and Pitch
update_nav_wp();
break;
case GUIDED:
wp_control = WP_MODE;
// check if we are close to point > loiter
wp_verify_byte = 0;
verify_nav_wp();
if (wp_control == WP_MODE) {
update_auto_yaw();
} else {
set_mode(LOITER);
}
update_nav_wp();
break;
case RTL:
// have we reached the desired Altitude?
if(alt_change_flag <= REACHED_ALT) { // we are at or above the target alt
if(rtl_reached_alt == false) {
rtl_reached_alt = true;
do_RTL();
}
wp_control = WP_MODE;
// checks if we have made it to home
update_nav_RTL();
} else{
// we need to loiter until we are ready to come home
wp_control = LOITER_MODE;
}
// calculates desired Yaw
#if FRAME_CONFIG == HELI_FRAME
update_auto_yaw();
#endif
// calculates the desired Roll and Pitch
update_nav_wp();
break;
// switch passthrough to LOITER
case LOITER:
case POSITION:
// This feature allows us to reposition the quad when the user lets
// go of the sticks
if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 500) {
if(wp_distance > 500)
loiter_override = true;
}
// Allow the user to take control temporarily,
if(loiter_override) {
// this sets the copter to not try and nav while we control it
wp_control = NO_NAV_MODE;
// reset LOITER to current position
next_WP.lat = current_loc.lat;
next_WP.lng = current_loc.lng;
if(g.rc_2.control_in == 0 && g.rc_1.control_in == 0) {
loiter_override = false;
wp_control = LOITER_MODE;
}
}else{
wp_control = LOITER_MODE;
}
if(loiter_timer != 0) {
// If we have a safe approach alt set and we have been loitering for 20 seconds(default), begin approach
if((millis() - loiter_timer) > (uint32_t)g.auto_land_timeout.get()) {
// just to make sure we clear the timer
loiter_timer = 0;
if(g.rtl_approach_alt == 0) {
set_mode(LAND);
if(home_distance < 300) {
next_WP.lat = home.lat;
next_WP.lng = home.lng;
}
}else{
if(g.rtl_approach_alt < current_loc.alt) {
set_new_altitude(g.rtl_approach_alt);
}
}
}
}
// calculates the desired Roll and Pitch
update_nav_wp();
break;
case LAND:
if(g.sonar_enabled)
verify_land_sonar();
else
verify_land_baro();
// calculates the desired Roll and Pitch
update_nav_wp();
break;
case CIRCLE:
wp_control = CIRCLE_MODE;
// calculates desired Yaw
update_auto_yaw();
update_nav_wp();
break;
case STABILIZE:
case TOY_A:
case TOY_M:
wp_control = NO_NAV_MODE;
update_nav_wp();
break;
}
// are we in SIMPLE mode?
if(do_simple && g.super_simple) {
// get distance to home
if(home_distance > SUPER_SIMPLE_RADIUS) { // 10m from home
// we reset the angular offset to be a vector from home to the quad
initial_simple_bearing = home_to_copter_bearing;
//Serial.printf("ISB: %d\n", initial_simple_bearing);
}
}
if(yaw_mode == YAW_LOOK_AT_HOME) {
if(home_is_set) {
//nav_yaw = point_at_home_yaw();
nav_yaw = get_bearing_cd(&current_loc, &home);
} else {
nav_yaw = 0;
}
}
}
static void update_nav_RTL()
{
// Have we have reached Home?
if(wp_distance <= 200 || check_missed_wp()) {
// if loiter_timer value > 0, we are set to trigger auto_land or approach
set_mode(LOITER);
// just un case we arrive and we aren't at the lower RTL alt yet.
set_new_altitude(get_RTL_alt());
// force loitering above home
next_WP.lat = home.lat;
next_WP.lng = home.lng;
// If failsafe OR auto approach altitude is set
// we will go into automatic land, (g.rtl_approach_alt) is the lowest point
// -1 means disable feature
if(failsafe || g.rtl_approach_alt >= 0)
loiter_timer = millis();
else
loiter_timer = 0;
}
slow_wp = true;
}
static void read_AHRS(void)
{
// Perform IMU calculations and get attitude info
//-----------------------------------------------
#if HIL_MODE != HIL_MODE_DISABLED
// update hil before ahrs update
gcs_update();
#endif
ahrs.update();
omega = imu.get_gyro();
#if SECONDARY_DMP_ENABLED == ENABLED
ahrs2.update();
#endif
}
static void update_trig(void){
Vector2f yawvector;
Matrix3f temp = ahrs.get_dcm_matrix();
yawvector.x = temp.a.x; // sin
yawvector.y = temp.b.x; // cos
yawvector.normalize();
cos_pitch_x = safe_sqrt(1 - (temp.c.x * temp.c.x)); // level = 1
cos_roll_x = temp.c.z / cos_pitch_x; // level = 1
cos_pitch_x = constrain(cos_pitch_x, 0, 1.0);
// this relies on constrain() of infinity doing the right thing,
// which it does do in avr-libc
cos_roll_x = constrain(cos_roll_x, -1.0, 1.0);
sin_yaw_y = yawvector.x; // 1y = north
cos_yaw_x = yawvector.y; // 0x = north
// added to convert earth frame to body frame for rate controllers
sin_pitch = -temp.c.x;
sin_roll = temp.c.y / cos_pitch_x;
//flat:
// 0 ° = cos_yaw: 0.00, sin_yaw: 1.00,
// 90° = cos_yaw: 1.00, sin_yaw: 0.00,
// 180 = cos_yaw: 0.00, sin_yaw: -1.00,
// 270 = cos_yaw: -1.00, sin_yaw: 0.00,
}
// updated at 10hz
static void update_altitude()
{
static int16_t old_sonar_alt = 0;
static int32_t old_baro_alt = 0;
#if HIL_MODE == HIL_MODE_ATTITUDE
// we are in the SIM, fake out the baro and Sonar
int16_t fake_relative_alt = g_gps->altitude - gps_base_alt;
baro_alt = fake_relative_alt;
sonar_alt = fake_relative_alt;
baro_rate = (baro_alt - old_baro_alt) * 5; // 5hz
old_baro_alt = baro_alt;
#else
// This is real life
#if INERTIAL_NAV == ENABLED
baro_rate = accels_velocity.z;
#else
// read in Actual Baro Altitude
baro_alt = read_barometer();
// calc the vertical accel rate
// 2.6 way
int16_t temp = (baro_alt - old_baro_alt) * 10;
baro_rate = (temp + baro_rate) >> 1;
baro_rate = constrain(baro_rate, -300, 300);
old_baro_alt = baro_alt;
// Using Tridge's new clamb rate calc
/*
int16_t temp = barometer.get_climb_rate() * 100;
baro_rate = (temp + baro_rate) >> 1;
baro_rate = constrain(baro_rate, -300, 300);
*/
#endif
// Note: sonar_alt is calculated in a faster loop and filtered with a mode filter
#endif
if(g.sonar_enabled) {
// filter out offset
float scale;
// calc rate of change for Sonar
#if HIL_MODE == HIL_MODE_ATTITUDE
// we are in the SIM, fake outthe Sonar rate
sonar_rate = baro_rate;
#else
// This is real life
// calc the vertical accel rate
// positive = going up.
sonar_rate = (sonar_alt - old_sonar_alt) * 10;
sonar_rate = constrain(sonar_rate, -150, 150);
old_sonar_alt = sonar_alt;
#endif
if(baro_alt < 800) {
#if SONAR_TILT_CORRECTION == 1
// correct alt for angle of the sonar
float temp = cos_pitch_x * cos_roll_x;
temp = max(temp, 0.707);
sonar_alt = (float)sonar_alt * temp;
#endif
scale = (float)(sonar_alt - 400) / 200.0;
scale = constrain(scale, 0.0, 1.0);
// solve for a blended altitude
current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale);
// solve for a blended climb_rate
climb_rate_actual = ((float)sonar_rate * (1.0 - scale)) + (float)baro_rate * scale;
}else{
// we must be higher than sonar (>800), don't get tricked by bad sonar reads
current_loc.alt = baro_alt;
// dont blend, go straight baro
climb_rate_actual = baro_rate;
}
}else{
// NO Sonar case
current_loc.alt = baro_alt;
climb_rate_actual = baro_rate;
}
// update the target altitude
verify_altitude();
// calc error
climb_rate_error = (climb_rate_actual - climb_rate) / 5;
#if INERTIAL_NAV == ENABLED
// inertial_nav
z_error_correction();
#endif
}
static void update_altitude_est()
{
if(alt_sensor_flag) {
update_altitude();
alt_sensor_flag = false;
if(g.log_bitmask & MASK_LOG_CTUN && motors.armed()) {
Log_Write_Control_Tuning();
}
}else{
// simple dithering of climb rate
climb_rate += climb_rate_error;
current_loc.alt += (climb_rate / 50);
}
//Serial.printf(" %d, %d, %d, %d\n", climb_rate_actual, climb_rate_error, climb_rate, current_loc.alt);
}
static void tuning(){
tuning_value = (float)g.rc_6.control_in / 1000.0;
g.rc_6.set_range(g.radio_tuning_low,g.radio_tuning_high); // 0 to 1
switch(g.radio_tuning) {
case CH6_RATE_KD:
g.pid_rate_roll.kD(tuning_value);
g.pid_rate_pitch.kD(tuning_value);
break;
case CH6_STABILIZE_KP:
g.pi_stabilize_roll.kP(tuning_value);
g.pi_stabilize_pitch.kP(tuning_value);
break;
case CH6_STABILIZE_KI:
g.pi_stabilize_roll.kI(tuning_value);
g.pi_stabilize_pitch.kI(tuning_value);
break;
case CH6_DAMP:
case CH6_STABILIZE_KD:
g.stabilize_d = tuning_value;
break;
case CH6_ACRO_KP:
g.acro_p = tuning_value;
break;
case CH6_RATE_KP:
g.pid_rate_roll.kP(tuning_value);
g.pid_rate_pitch.kP(tuning_value);
break;
case CH6_RATE_KI:
g.pid_rate_roll.kI(tuning_value);
g.pid_rate_pitch.kI(tuning_value);
break;
case CH6_YAW_KP:
g.pi_stabilize_yaw.kP(tuning_value);
break;
case CH6_YAW_KI:
g.pi_stabilize_yaw.kI(tuning_value);
break;
case CH6_YAW_RATE_KP:
g.pid_rate_yaw.kP(tuning_value);
break;
case CH6_YAW_RATE_KD:
g.pid_rate_yaw.kD(tuning_value);
break;
case CH6_THROTTLE_KP:
g.pid_throttle.kP(tuning_value);
break;
case CH6_TOP_BOTTOM_RATIO:
motors.top_bottom_ratio = tuning_value;
break;
case CH6_RELAY:
if (g.rc_6.control_in > 525) relay.on();
if (g.rc_6.control_in < 475) relay.off();
break;
case CH6_TRAVERSE_SPEED:
g.waypoint_speed_max = g.rc_6.control_in;
break;
case CH6_LOITER_KP:
g.pi_loiter_lat.kP(tuning_value);
g.pi_loiter_lon.kP(tuning_value);
break;
case CH6_LOITER_KI:
g.pi_loiter_lat.kI(tuning_value);
g.pi_loiter_lon.kI(tuning_value);
break;
case CH6_NAV_KP:
g.pid_nav_lat.kP(tuning_value);
g.pid_nav_lon.kP(tuning_value);
break;
case CH6_LOITER_RATE_KP:
g.pid_loiter_rate_lon.kP(tuning_value);
g.pid_loiter_rate_lat.kP(tuning_value);
break;
case CH6_LOITER_RATE_KI:
g.pid_loiter_rate_lon.kI(tuning_value);
g.pid_loiter_rate_lat.kI(tuning_value);
break;
case CH6_LOITER_RATE_KD:
g.pid_loiter_rate_lon.kD(tuning_value);
g.pid_loiter_rate_lat.kD(tuning_value);
break;
case CH6_NAV_I:
g.pid_nav_lat.kI(tuning_value);
g.pid_nav_lon.kI(tuning_value);
break;
#if FRAME_CONFIG == HELI_FRAME
case CH6_HELI_EXTERNAL_GYRO:
motors.ext_gyro_gain = tuning_value;
break;
#endif
case CH6_THR_HOLD_KP:
g.pi_alt_hold.kP(tuning_value);
break;
case CH6_OPTFLOW_KP:
g.pid_optflow_roll.kP(tuning_value);
g.pid_optflow_pitch.kP(tuning_value);
break;
case CH6_OPTFLOW_KI:
g.pid_optflow_roll.kI(tuning_value);
g.pid_optflow_pitch.kI(tuning_value);
break;
case CH6_OPTFLOW_KD:
g.pid_optflow_roll.kD(tuning_value);
g.pid_optflow_pitch.kD(tuning_value);
break;
#if HIL_MODE != HIL_MODE_ATTITUDE // do not allow modifying _kp or _kp_yaw gains in HIL mode
case CH6_AHRS_YAW_KP:
ahrs._kp_yaw.set(tuning_value);
break;
case CH6_AHRS_KP:
ahrs._kp.set(tuning_value);
break;
#endif
}
}
// Outputs Nav_Pitch and Nav_Roll
static void update_nav_wp()
{
if(wp_control == LOITER_MODE) {
// calc error to target
calc_location_error(&next_WP);
// use error as the desired rate towards the target
calc_loiter(long_error, lat_error);
}else if(wp_control == CIRCLE_MODE) {
// check if we have missed the WP
int16_t loiter_delta = (target_bearing - old_target_bearing)/100;
// reset the old value
old_target_bearing = target_bearing;
// wrap values
if (loiter_delta > 180) loiter_delta -= 360;
if (loiter_delta < -180) loiter_delta += 360;
// sum the angle around the WP
loiter_sum += loiter_delta;
// create a virtual waypoint that circles the next_WP
// Count the degrees we have circulated the WP
//int16_t circle_angle = wrap_360(target_bearing + 3000 + 18000) / 100;
circle_angle += (circle_rate * dTnav);
//1° = 0.0174532925 radians
// wrap
if (circle_angle > 6.28318531)
circle_angle -= 6.28318531;
next_WP.lng = circle_WP.lng + (g.loiter_radius * 100 * cos(1.57 - circle_angle) * scaleLongUp);
next_WP.lat = circle_WP.lat + (g.loiter_radius * 100 * sin(1.57 - circle_angle));
// use error as the desired rate towards the target
// nav_lon, nav_lat is calculated
if(wp_distance > 400) {
calc_nav_rate(get_desired_speed(g.waypoint_speed_max, true));
}else{
// calc the lat and long error to the target
calc_location_error(&next_WP);
calc_loiter(long_error, lat_error);
}
//CIRCLE: angle:29, dist:0, lat:400, lon:242
// debug
//int16_t angleTest = degrees(circle_angle);
//int16_t nroll = nav_roll;
//int16_t npitch = nav_pitch;
//Serial.printf("CIRCLE: angle:%d, dist:%d, X:%d, Y:%d, P:%d, R:%d \n", angleTest, (int)wp_distance , (int)long_error, (int)lat_error, npitch, nroll);
}else if(wp_control == WP_MODE) {
// calc error to target
calc_location_error(&next_WP);
int16_t speed = get_desired_speed(g.waypoint_speed_max, slow_wp);
// use error as the desired rate towards the target
calc_nav_rate(speed);
}else if(wp_control == NO_NAV_MODE) {
// clear out our nav so we can do things like land straight down
// or change Loiter position
// We bring copy over our Iterms for wind control, but we don't navigate
nav_lon = g.pid_loiter_rate_lon.get_integrator();
nav_lat = g.pid_loiter_rate_lon.get_integrator();
nav_lon = constrain(nav_lon, -2000, 2000); // 20°
nav_lat = constrain(nav_lat, -2000, 2000); // 20°
}
}
static void update_auto_yaw()
{
if(wp_control == CIRCLE_MODE) {
auto_yaw = get_bearing_cd(&current_loc, &circle_WP);
}else if(wp_control == LOITER_MODE) {
// just hold nav_yaw
}else if(yaw_tracking == MAV_ROI_LOCATION) {
auto_yaw = get_bearing_cd(&current_loc, &target_WP);
}else if(yaw_tracking == MAV_ROI_WPNEXT) {
// Point towards next WP
auto_yaw = original_target_bearing;
}
}