Ardupilot2/libraries/AP_Motors/AP_Motors_Class.cpp
2024-03-18 21:48:55 -03:00

330 lines
9.8 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Motors_Class.h"
#include <AP_HAL/AP_HAL.h>
#include <SRV_Channel/SRV_Channel.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_Notify/AP_Notify.h>
#define AP_MOTORS_SLEW_FILTER_CUTOFF 50.0f
extern const AP_HAL::HAL& hal;
// singleton instance
AP_Motors *AP_Motors::_singleton;
// Constructor
AP_Motors::AP_Motors(uint16_t speed_hz) :
_speed_hz(speed_hz),
_throttle_filter(),
_throttle_slew(),
_throttle_slew_filter(),
_spool_desired(DesiredSpoolState::SHUT_DOWN),
_spool_state(SpoolState::SHUT_DOWN)
{
_singleton = this;
// setup throttle filtering
_throttle_filter.set_cutoff_frequency(0.0f);
_throttle_filter.reset(0.0f);
_throttle_slew_filter.set_cutoff_frequency(AP_MOTORS_SLEW_FILTER_CUTOFF);
_throttle_slew_filter.reset(0.0f);
// setup throttle slew detector
_throttle_slew.reset();
// init limit flags
limit.roll = true;
limit.pitch = true;
limit.yaw = true;
limit.throttle_lower = true;
limit.throttle_upper = true;
_thrust_boost = false;
_thrust_balanced = true;
};
void AP_Motors::get_frame_and_type_string(char *buffer, uint8_t buflen) const
{
const char *frame_str = get_frame_string();
const char *type_str = get_type_string();
if (type_str != nullptr && strlen(type_str)
#if AP_SCRIPTING_ENABLED
&& custom_frame_string == nullptr
#endif
) {
hal.util->snprintf(buffer, buflen, "Frame: %s/%s", frame_str, type_str);
} else {
hal.util->snprintf(buffer, buflen, "Frame: %s", frame_str);
}
}
void AP_Motors::armed(bool arm)
{
if (_armed != arm) {
_armed = arm;
AP_Notify::flags.armed = arm;
if (!arm) {
save_params_on_disarm();
}
}
};
void AP_Motors::set_desired_spool_state(DesiredSpoolState spool)
{
if (_armed || (spool == DesiredSpoolState::SHUT_DOWN)) {
_spool_desired = spool;
}
};
// pilot input in the -1 ~ +1 range for roll, pitch and yaw. 0~1 range for throttle
void AP_Motors::set_radio_passthrough(float roll_input, float pitch_input, float throttle_input, float yaw_input)
{
_roll_radio_passthrough = roll_input;
_pitch_radio_passthrough = pitch_input;
_throttle_radio_passthrough = throttle_input;
_yaw_radio_passthrough = yaw_input;
}
/*
write to an output channel
*/
void AP_Motors::rc_write(uint8_t chan, uint16_t pwm)
{
SRV_Channel::Aux_servo_function_t function = SRV_Channels::get_motor_function(chan);
if ((1U<<chan) & _motor_pwm_scaled.mask) {
// note that PWM_MIN/MAX has been forced to 1000/2000
SRV_Channels::set_output_scaled(function, float(pwm) - _motor_pwm_scaled.offset);
} else {
SRV_Channels::set_output_pwm(function, pwm);
}
}
/*
write to an output channel for an angle actuator
*/
void AP_Motors::rc_write_angle(uint8_t chan, int16_t angle_cd)
{
SRV_Channel::Aux_servo_function_t function = SRV_Channels::get_motor_function(chan);
SRV_Channels::set_output_scaled(function, angle_cd);
}
/*
set frequency of a set of channels
*/
void AP_Motors::rc_set_freq(uint32_t motor_mask, uint16_t freq_hz)
{
if (freq_hz > 50) {
_motor_fast_mask |= motor_mask;
}
const uint32_t mask = motor_mask_to_srv_channel_mask(motor_mask);
hal.rcout->set_freq(mask, freq_hz);
hal.rcout->set_dshot_esc_type(SRV_Channels::get_dshot_esc_type());
const pwm_type type = (pwm_type)_pwm_type.get();
switch (type) {
case PWM_TYPE_ONESHOT:
if (freq_hz > 50 && mask != 0) {
hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_ONESHOT);
}
break;
case PWM_TYPE_ONESHOT125:
if (freq_hz > 50 && mask != 0) {
hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_ONESHOT125);
}
break;
case PWM_TYPE_BRUSHED:
hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_BRUSHED);
break;
case PWM_TYPE_DSHOT150:
hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_DSHOT150);
break;
case PWM_TYPE_DSHOT300:
hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_DSHOT300);
break;
case PWM_TYPE_DSHOT600:
hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_DSHOT600);
break;
case PWM_TYPE_DSHOT1200:
hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_DSHOT1200);
break;
case PWM_TYPE_PWM_RANGE:
case PWM_TYPE_PWM_ANGLE:
/*
this is a motor output type for multirotors which honours
the SERVOn_MIN/MAX (and TRIM for angle) values per channel
Motor PWM min and max are hard coded to 1000 to 2000.
Range type offsets by 1000 to get 0 to 1000.
Angle type offsets by 1500 to get -500 to 500.
*/
if (type == PWM_TYPE_PWM_RANGE) {
_motor_pwm_scaled.offset = 1000.0;
} else {
// PWM_TYPE_PWM_ANGLE
_motor_pwm_scaled.offset = 1500.0;
}
_motor_pwm_scaled.mask |= motor_mask;
for (uint8_t i=0; i<16; i++) {
if ((1U<<i) & motor_mask) {
if (type == PWM_TYPE_PWM_RANGE) {
SRV_Channels::set_range(SRV_Channels::get_motor_function(i), 1000);
} else {
// PWM_TYPE_PWM_ANGLE
SRV_Channels::set_angle(SRV_Channels::get_motor_function(i), 500);
}
}
}
hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_NORMAL);
break;
default:
hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_NORMAL);
break;
}
}
/*
map an internal motor mask to real motor mask, accounting for
SERVOn_FUNCTION mappings, and allowing for multiple outputs per
motor number
*/
uint32_t AP_Motors::motor_mask_to_srv_channel_mask(uint32_t mask) const
{
uint32_t mask2 = 0;
for (uint8_t i = 0; i < 32; i++) {
uint32_t bit = 1UL << i;
if (mask & bit) {
SRV_Channel::Aux_servo_function_t function = SRV_Channels::get_motor_function(i);
mask2 |= SRV_Channels::get_output_channel_mask(function);
}
}
return mask2;
}
/*
add a motor, setting up default output function as needed
*/
void AP_Motors::add_motor_num(int8_t motor_num)
{
// ensure valid motor number is provided
if (motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS) {
SRV_Channel::Aux_servo_function_t function = SRV_Channels::get_motor_function(motor_num);
SRV_Channels::set_aux_channel_default(function, motor_num);
}
}
// set limit flag for pitch, roll and yaw
void AP_Motors::set_limit_flag_pitch_roll_yaw(bool flag)
{
limit.roll = flag;
limit.pitch = flag;
limit.yaw = flag;
}
#if AP_SCRIPTING_ENABLED
void AP_Motors::set_external_limits(bool roll, bool pitch, bool yaw, bool throttle_lower, bool throttle_upper)
{
external_limits.roll = roll;
external_limits.pitch = pitch;
external_limits.yaw = yaw;
external_limits.throttle_lower = throttle_lower;
external_limits.throttle_upper = throttle_upper;
}
#endif
// returns true if the configured PWM type is digital and should have fixed endpoints
bool AP_Motors::is_digital_pwm_type() const
{
switch (_pwm_type) {
case PWM_TYPE_DSHOT150:
case PWM_TYPE_DSHOT300:
case PWM_TYPE_DSHOT600:
case PWM_TYPE_DSHOT1200:
return true;
case PWM_TYPE_NORMAL:
case PWM_TYPE_ONESHOT:
case PWM_TYPE_ONESHOT125:
case PWM_TYPE_BRUSHED:
case PWM_TYPE_PWM_RANGE:
case PWM_TYPE_PWM_ANGLE:
break;
}
return false;
}
// return string corresponding to frame_class
const char* AP_Motors::get_frame_string() const
{
#if AP_SCRIPTING_ENABLED
if (custom_frame_string != nullptr) {
return custom_frame_string;
}
#endif
return _get_frame_string();
}
#if AP_SCRIPTING_ENABLED
// set custom frame string
void AP_Motors::set_frame_string(const char * str) {
if (custom_frame_string != nullptr) {
return;
}
const size_t len = strlen(str)+1;
custom_frame_string = new char[len];
if (custom_frame_string != nullptr) {
strncpy(custom_frame_string, str, len);
}
}
#endif
// output_test_seq - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_Motors::output_test_seq(uint8_t motor_seq, int16_t pwm)
{
if (armed() && _interlock) {
_output_test_seq(motor_seq, pwm);
}
}
bool AP_Motors::arming_checks(size_t buflen, char *buffer) const
{
if (!initialised_ok()) {
hal.util->snprintf(buffer, buflen, "Check frame class and type");
return false;
}
return true;
}
bool AP_Motors::motor_test_checks(size_t buflen, char *buffer) const
{
// Must pass base class arming checks (the function above)
// Do not run frame specific arming checks as motor test is less strict
// For example not all the outputs have to be assigned
return AP_Motors::arming_checks(buflen, buffer);
}
namespace AP {
AP_Motors *motors()
{
return AP_Motors::get_singleton();
}
}