Ardupilot2/libraries/AP_Terrain/tools/create_terrain.py
Andrew Tridgell 4e98636a53 AP_Terrain: added a TERRAIN_MARGIN parameter
this sets the acceptance margin for GCS generated terrain data. You
can raise this to allow old data generated with the less accurate
longitude scaling to be used
2021-08-22 20:32:46 +10:00

544 lines
19 KiB
Python
Executable File

#!/usr/bin/env python
'''
create ardupilot terrain database files
'''
from MAVProxy.modules.mavproxy_map import srtm
import math, struct, os, sys
import crc16, time, struct
# avoid annoying crc16 DeprecationWarning
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
# MAVLink sends 4x4 grids
TERRAIN_GRID_MAVLINK_SIZE = 4
# a 2k grid_block on disk contains 8x7 of the mavlink grids. Each
# grid block overlaps by one with its neighbour. This ensures that
# the altitude at any point can be calculated from a single grid
# block
TERRAIN_GRID_BLOCK_MUL_X = 7
TERRAIN_GRID_BLOCK_MUL_Y = 8
# this is the spacing between 32x28 grid blocks, in grid_spacing units
TERRAIN_GRID_BLOCK_SPACING_X = ((TERRAIN_GRID_BLOCK_MUL_X-1)*TERRAIN_GRID_MAVLINK_SIZE)
TERRAIN_GRID_BLOCK_SPACING_Y = ((TERRAIN_GRID_BLOCK_MUL_Y-1)*TERRAIN_GRID_MAVLINK_SIZE)
# giving a total grid size of a disk grid_block of 32x28
TERRAIN_GRID_BLOCK_SIZE_X = (TERRAIN_GRID_MAVLINK_SIZE*TERRAIN_GRID_BLOCK_MUL_X)
TERRAIN_GRID_BLOCK_SIZE_Y = (TERRAIN_GRID_MAVLINK_SIZE*TERRAIN_GRID_BLOCK_MUL_Y)
# format of grid on disk
TERRAIN_GRID_FORMAT_VERSION = 1
IO_BLOCK_SIZE = 2048
IO_BLOCK_DATA_SIZE = 1821
IO_BLOCK_TRAILER_SIZE = IO_BLOCK_SIZE - IO_BLOCK_DATA_SIZE
GRID_SPACING = 100
def to_float32(f):
'''emulate single precision float'''
return struct.unpack('f', struct.pack('f',f))[0]
LOCATION_SCALING_FACTOR = to_float32(0.011131884502145034)
LOCATION_SCALING_FACTOR_INV = to_float32(89.83204953368922)
def longitude_scale(lat):
'''get longitude scale factor'''
scale = to_float32(math.cos(to_float32(math.radians(lat))))
return max(scale, 0.01)
def diff_longitude_E7(lon1, lon2):
'''get longitude difference, handling wrap'''
if lon1 * lon2 >= 0:
# common case of same sign
return lon1 - lon2
dlon = lon1 - lon2
if dlon > 1800000000:
dlon -= 3600000000
elif dlon < -1800000000:
dlon += 3600000000
return dlon
def get_distance_NE_e7(lat1, lon1, lat2, lon2):
'''get distance tuple between two positions in 1e7 format'''
dlat = lat2 - lat1
dlng = diff_longitude_E7(lon2,lon1) * longitude_scale((lat1+lat2)*0.5*1.0e-7)
return (dlat * LOCATION_SCALING_FACTOR, dlng * LOCATION_SCALING_FACTOR)
def add_offset(lat_e7, lon_e7, ofs_north, ofs_east):
'''add offset in meters to a position'''
dlat = int(float(ofs_north) * LOCATION_SCALING_FACTOR_INV)
dlng = int((float(ofs_east) * LOCATION_SCALING_FACTOR_INV) / longitude_scale((lat_e7+dlat*0.5)*1.0e-7))
return (int(lat_e7+dlat), int(lon_e7+dlng))
def east_blocks(lat_e7, lon_e7):
'''work out how many blocks per stride on disk'''
lat2_e7 = lat_e7
lon2_e7 = lon_e7 + 10*1000*1000
# shift another two blocks east to ensure room is available
lat2_e7, lon2_e7 = add_offset(lat2_e7, lon2_e7, 0, 2*GRID_SPACING*TERRAIN_GRID_BLOCK_SIZE_Y)
offset = get_distance_NE_e7(lat_e7, lon_e7, lat2_e7, lon2_e7)
return int(offset[1] / (GRID_SPACING*TERRAIN_GRID_BLOCK_SPACING_Y))
def pos_from_file_offset(lat_degrees, lon_degrees, file_offset):
'''return a lat/lon in 1e7 format given a file offset'''
ref_lat = int(lat_degrees*10*1000*1000)
ref_lon = int(lon_degrees*10*1000*1000)
stride = east_blocks(ref_lat, ref_lon)
blocks = file_offset // IO_BLOCK_SIZE
grid_idx_x = blocks // stride
grid_idx_y = blocks % stride
idx_x = grid_idx_x * TERRAIN_GRID_BLOCK_SPACING_X
idx_y = grid_idx_y * TERRAIN_GRID_BLOCK_SPACING_Y
offset = (idx_x * GRID_SPACING, idx_y * GRID_SPACING)
(lat_e7, lon_e7) = add_offset(ref_lat, ref_lon, offset[0], offset[1])
offset = get_distance_NE_e7(ref_lat, ref_lon, lat_e7, lon_e7)
grid_idx_x = int(idx_x / TERRAIN_GRID_BLOCK_SPACING_X)
grid_idx_y = int(idx_y / TERRAIN_GRID_BLOCK_SPACING_Y)
(lat_e7, lon_e7) = add_offset(ref_lat, ref_lon,
grid_idx_x * TERRAIN_GRID_BLOCK_SPACING_X * float(GRID_SPACING),
grid_idx_y * TERRAIN_GRID_BLOCK_SPACING_Y * float(GRID_SPACING))
return (lat_e7, lon_e7)
class GridBlock(object):
def __init__(self, lat_int, lon_int, lat, lon):
'''
a grid block is a structure in a local file containing height
information. Each grid block is 2048 bytes in size, to keep file IO to
block oriented SD cards efficient
'''
# crc of whole block, taken with crc=0
self.crc = 0
# format version number
self.version = TERRAIN_GRID_FORMAT_VERSION
# grid spacing in meters
self.spacing = GRID_SPACING
# heights in meters over a 32*28 grid
self.height = []
for x in range(TERRAIN_GRID_BLOCK_SIZE_X):
self.height.append([0]*TERRAIN_GRID_BLOCK_SIZE_Y)
# bitmap of 4x4 grids filled in from GCS (56 bits are used)
self.bitmap = (1<<56)-1
lat_e7 = int(lat * 1.0e7)
lon_e7 = int(lon * 1.0e7)
# grids start on integer degrees. This makes storing terrain data on
# the SD card a bit easier. Note that this relies on the python floor
# behaviour with integer division
self.lat_degrees = lat_int
self.lon_degrees = lon_int
# create reference position for this rounded degree position
ref_lat = self.lat_degrees*10*1000*1000
ref_lon = self.lon_degrees*10*1000*1000
# find offset from reference
offset = get_distance_NE_e7(ref_lat, ref_lon, lat_e7, lon_e7)
offset = (round(offset[0]), round(offset[1]))
# get indices in terms of grid_spacing elements
idx_x = int(offset[0] / GRID_SPACING)
idx_y = int(offset[1] / GRID_SPACING)
# find indexes into 32*28 grids for this degree reference. Note
# the use of TERRAIN_GRID_BLOCK_SPACING_{X,Y} which gives a one square
# overlap between grids
self.grid_idx_x = idx_x // TERRAIN_GRID_BLOCK_SPACING_X
self.grid_idx_y = idx_y // TERRAIN_GRID_BLOCK_SPACING_Y
# calculate lat/lon of SW corner of 32*28 grid_block
(ref_lat, ref_lon) = add_offset(ref_lat, ref_lon,
self.grid_idx_x * TERRAIN_GRID_BLOCK_SPACING_X * float(GRID_SPACING),
self.grid_idx_y * TERRAIN_GRID_BLOCK_SPACING_Y * float(GRID_SPACING))
self.lat = ref_lat
self.lon = ref_lon
def fill(self, gx, gy, altitude):
'''fill a square'''
self.height[gx][gy] = int(altitude)
def blocknum(self):
'''find IO block number'''
stride = east_blocks(self.lat_degrees*1e7, self.lon_degrees*1e7)
return stride * self.grid_idx_x + self.grid_idx_y
class TerrainError:
'''represent errors from testing a degree file'''
def __init__(self):
self.missing = 0
self.incorrect = 0
self.errors = 0
def add(self, err):
self.missing += err.missing
self.incorrect += err.incorrect
self.errors += err.errors
def __str__(self):
if self.missing == 0 and self.incorrect == 0 and self.errors == 0:
return "OK"
return "Errors: %u Missing: %u Incorrect: %u" % (self.errors, self.missing, self.incorrect)
class DataFile(object):
def __init__(self, lat, lon, readonly=False):
if lat < 0:
NS = 'S'
else:
NS = 'N'
if lon < 0:
EW = 'W'
else:
EW = 'E'
name = "%s/%c%02u%c%03u.DAT" % (args.directory,
NS, min(abs(int(lat)), 99),
EW, min(abs(int(lon)), 999))
try:
os.mkdir(args.directory)
except Exception:
pass
self.fh = None
if readonly:
if os.path.exists(name):
self.fh = open(name, 'rb')
elif not os.path.exists(name):
self.fh = open(name, 'w+b')
else:
self.fh = open(name, 'r+b')
def seek_offset(self, block):
'''seek to right offset'''
# work out how many longitude blocks there are at this latitude
file_offset = block.blocknum() * IO_BLOCK_SIZE
self.fh.seek(file_offset)
def pack(self, block):
'''pack into a block'''
buf = bytes()
buf += struct.pack("<QiiHHH", block.bitmap, block.lat, block.lon, block.crc, block.version, block.spacing)
for gx in range(TERRAIN_GRID_BLOCK_SIZE_X):
buf += struct.pack("<%uh" % TERRAIN_GRID_BLOCK_SIZE_Y, *block.height[gx])
buf += struct.pack("<HHhb", block.grid_idx_x, block.grid_idx_y, block.lon_degrees, block.lat_degrees)
buf += struct.pack("%uB" % IO_BLOCK_TRAILER_SIZE, *[0]*IO_BLOCK_TRAILER_SIZE)
return buf
def write(self, block):
'''write a grid block'''
self.seek_offset(block)
block.crc = 0
buf = self.pack(block)
block.crc = crc16.crc16xmodem(buf[:IO_BLOCK_DATA_SIZE])
buf = self.pack(block)
self.fh.write(buf)
def check_filled(self, block):
'''read a grid block and check if already filled'''
self.seek_offset(block)
if self.fh is None:
return False
buf = self.fh.read(IO_BLOCK_SIZE)
if len(buf) != IO_BLOCK_SIZE:
return False
(bitmap, lat, lon, crc, version, spacing) = struct.unpack("<QiiHHH", buf[:22])
if (version != TERRAIN_GRID_FORMAT_VERSION or
abs(lat - block.lat)>2 or
abs(lon - block.lon)>2 or
spacing != GRID_SPACING or
bitmap != (1<<56)-1):
return False
buf = buf[:16] + struct.pack("<H", 0) + buf[18:]
crc2 = crc16.crc16xmodem(buf[:IO_BLOCK_DATA_SIZE])
if crc2 != crc:
return False
return True
def bitnum(self, gx, gy):
'''get bit number for a grid index'''
subgrid_x = gx // TERRAIN_GRID_MAVLINK_SIZE
subgrid_y = gy // TERRAIN_GRID_MAVLINK_SIZE
return subgrid_y + TERRAIN_GRID_BLOCK_MUL_Y*subgrid_x
def compare(self, block, test_threshold):
'''test a grid block for correct values
return missing, incorrect tuple
'''
err = TerrainError()
total_values = TERRAIN_GRID_BLOCK_SIZE_X * TERRAIN_GRID_BLOCK_SIZE_Y
if self.fh is None:
err.errors += 1
return err
self.seek_offset(block)
buf = self.fh.read(IO_BLOCK_SIZE)
if len(buf) == 0:
# not filled in
err.missing += total_values
return err
if len(buf) != IO_BLOCK_SIZE:
print("bad read %u" % len(buf))
err.errors += 1
return err
(bitmap, lat, lon, crc, version, spacing) = struct.unpack("<QiiHHH", buf[:22])
if version == 0 and spacing == 0:
# not filled in
err.missing += total_values
return err
if (version != TERRAIN_GRID_FORMAT_VERSION or
abs(lat - block.lat)>2 or
abs(lon - block.lon)>2 or
spacing != GRID_SPACING):
print("bad header")
err.errors += 1
return err
buf = buf[:16] + struct.pack("<H", 0) + buf[18:]
crc2 = crc16.crc16xmodem(buf[:IO_BLOCK_DATA_SIZE])
if crc2 != crc:
print("bad crc")
err.errors += 1
return err
ofs = 22
for gx in range(TERRAIN_GRID_BLOCK_SIZE_X):
heights = struct.unpack("<%uh" % TERRAIN_GRID_BLOCK_SIZE_Y, buf[ofs:ofs+TERRAIN_GRID_BLOCK_SIZE_Y*2])
for gy in range(TERRAIN_GRID_BLOCK_SIZE_Y):
mask = 1 << self.bitnum(gx, gy)
if not bitmap & mask:
err.missing += 1
continue
if abs(heights[gy] - block.height[gx][gy]) > test_threshold:
err.incorrect += 1
if args.verbose:
lat_e7, lon_e7 = add_offset(lat, lon, gx*GRID_SPACING, gy*GRID_SPACING)
print("incorrect at %f,%f got %dm should be %dm" % (lat_e7*1.0e-7, lon_e7*1.0e-7, heights[gy], block.height[gx][gy]))
ofs += TERRAIN_GRID_BLOCK_SIZE_Y*2
return err
def pos_range(filename):
'''return min/max of lat/lon in a file'''
fh = open(filename, 'rb')
lat_min = None
lat_max = None
lon_min = None
lon_max = None
while True:
buf = fh.read(IO_BLOCK_SIZE)
if len(buf) != IO_BLOCK_SIZE:
break
(bitmap, lat, lon, crc, version, spacing) = struct.unpack("<QiiHHH", buf[:22])
if (version != TERRAIN_GRID_FORMAT_VERSION):
print("Bad version %u in %s" % (version, filename))
break
buf = buf[:16] + struct.pack("<H", 0) + buf[18:]
crc2 = crc16.crc16xmodem(buf[:IO_BLOCK_DATA_SIZE])
if crc2 != crc:
print("Bad CRC in %s" % filename)
break
if lat_min is None:
lat_min = lat
lat_max = lat
lon_min = lon
lon_max = lon
lat_min = min(lat_min, lat)
lat_max = max(lat_max, lat)
lon_min = min(lon_min, lon)
lon_max = max(lon_max, lon)
lat_min *= 1.0e-7
lat_max *= 1.0e-7
lon_min *= 1.0e-7
lon_max *= 1.0e-7
return lat_min, lat_max, lon_min, lon_max
def create_degree(lat, lon):
'''create data file for one degree lat/lon'''
lat_int = int(math.floor(lat))
lon_int = int(math.floor((lon)))
tiles = {}
dfile = DataFile(lat_int, lon_int)
print("Creating for %d %d" % (lat_int, lon_int))
blocknum = -1
while True:
blocknum += 1
(lat_e7, lon_e7) = pos_from_file_offset(lat_int, lon_int, blocknum * IO_BLOCK_SIZE)
if lat_e7*1.0e-7 - lat_int >= 1.0:
break
lat = lat_e7 * 1.0e-7
lon = lon_e7 * 1.0e-7
grid = GridBlock(lat_int, lon_int, lat, lon)
if grid.blocknum() != blocknum:
continue
if not args.force and dfile.check_filled(grid):
continue
for gx in range(TERRAIN_GRID_BLOCK_SIZE_X):
for gy in range(TERRAIN_GRID_BLOCK_SIZE_Y):
lat_e7, lon_e7 = add_offset(lat*1.0e7, lon*1.0e7, gx*GRID_SPACING, gy*GRID_SPACING)
lat2_int = int(math.floor(lat_e7*1.0e-7))
lon2_int = int(math.floor(lon_e7*1.0e-7))
tile_idx = (lat2_int, lon2_int)
while not tile_idx in tiles:
tile = downloader.getTile(lat2_int, lon2_int)
waited = False
if tile == 0:
print("waiting on download of %d,%d" % (lat2_int, lon2_int))
time.sleep(0.3)
waited = True
continue
if waited:
print("downloaded %d,%d" % (lat2_int, lon2_int))
tiles[tile_idx] = tile
if isinstance(tile, srtm.SRTMOceanTile):
# shortcut ocean tile creation
break
altitude = tiles[tile_idx].getAltitudeFromLatLon(lat_e7*1.0e-7, lon_e7*1.0e-7)
grid.fill(gx, gy, altitude)
dfile.write(grid)
def test_degree(lat, lon):
'''test data file for one degree lat/lon. Return a TerrainError object'''
lat_int = int(math.floor(lat))
lon_int = int(math.floor((lon)))
tiles = {}
dfile = DataFile(lat_int, lon_int, True)
print("Testing %d %d" % (lat_int, lon_int))
blocknum = -1
errors = TerrainError()
while True:
blocknum += 1
(lat_e7, lon_e7) = pos_from_file_offset(lat_int, lon_int, blocknum * IO_BLOCK_SIZE)
if lat_e7*1.0e-7 - lat_int >= 1.0:
break
lat = lat_e7 * 1.0e-7
lon = lon_e7 * 1.0e-7
grid = GridBlock(lat_int, lon_int, lat, lon)
if grid.blocknum() != blocknum:
continue
for gx in range(TERRAIN_GRID_BLOCK_SIZE_X):
for gy in range(TERRAIN_GRID_BLOCK_SIZE_Y):
lat_e7, lon_e7 = add_offset(lat*1.0e7, lon*1.0e7, gx*GRID_SPACING, gy*GRID_SPACING)
lat2_int = int(math.floor(lat_e7*1.0e-7))
lon2_int = int(math.floor(lon_e7*1.0e-7))
tile_idx = (lat2_int, lon2_int)
while not tile_idx in tiles:
tile = downloader.getTile(lat2_int, lon2_int)
waited = False
if tile == 0:
print("waiting on download of %d,%d" % (lat2_int, lon2_int))
time.sleep(0.3)
waited = True
continue
if waited:
print("downloaded %d,%d" % (lat2_int, lon2_int))
tiles[tile_idx] = tile
altitude = tiles[tile_idx].getAltitudeFromLatLon(lat_e7*1.0e-7, lon_e7*1.0e-7)
grid.fill(gx, gy, altitude)
err = dfile.compare(grid, args.test_threshold)
errors.add(err)
return errors
def test_directory():
'''test all terrain tiles in a directory'''
err = TerrainError()
files = sorted(os.listdir(args.directory))
for f in files:
if not f.endswith(".DAT"):
continue
if not (f.startswith("N") or f.startswith("S")):
continue
f = f[:-4]
lat = int(f[1:3])
lon = int(f[4:])
if f[0] == 'S':
lat = -lat
if f[3] == 'W':
lon = -lon
e = test_degree(lat, lon)
print(e)
err.add(e)
return err
from argparse import ArgumentParser
parser = ArgumentParser(description='terrain data creator')
parser.add_argument("--lat", type=float, default=None)
parser.add_argument("--lon", type=float, default=None)
parser.add_argument("--force", action='store_true', help="overwrite existing full blocks")
parser.add_argument("--radius", type=int, default=100, help="radius in km")
parser.add_argument("--debug", action='store_true', default=False)
parser.add_argument("--verbose", action='store_true', default=False)
parser.add_argument("--spacing", type=int, default=100, help="grid spacing in meters")
parser.add_argument("--pos-range", default=None, help="show position range for a file")
parser.add_argument("--test", action='store_true', help="test altitudes instead of writing them")
parser.add_argument("--test-threshold", default=2.0, type=float, help="test altitude threshold")
parser.add_argument("--directory", default="terrain", help="directory to use")
args = parser.parse_args()
if args.pos_range is not None:
print(pos_range(args.pos_range))
sys.exit(0)
downloader = srtm.SRTMDownloader(debug=args.debug)
downloader.loadFileList()
GRID_SPACING = args.spacing
done = set()
if args.test:
err = test_directory()
if err.errors:
sys.exit(1)
sys.exit(0)
if args.lat is None or args.lon is None:
print("You must supply latitude and longitude")
sys.exit(1)
for dx in range(-args.radius, args.radius):
for dy in range(-args.radius, args.radius):
(lat2,lon2) = add_offset(args.lat*1e7, args.lon*1e7, dx*1000.0, dy*1000.0)
if abs(lat2) > 90e7 or abs(lon2) > 180e7:
continue
lat_int = int(math.floor(lat2 * 1.0e-7))
lon_int = int(math.floor(lon2 * 1.0e-7))
tag = (lat_int, lon_int)
if tag in done:
continue
done.add(tag)
create_degree(lat_int, lon_int)