cb037f3416
the backends are setup to have just the minimum functionality needed for a rangefinder, with all of the higher level logic in the frontend. This should make writing a new backend easier
196 lines
8.9 KiB
C++
196 lines
8.9 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "RangeFinder.h"
|
|
#include "AP_RangeFinder_analog.h"
|
|
|
|
// table of user settable parameters
|
|
const AP_Param::GroupInfo RangeFinder::var_info[] PROGMEM = {
|
|
// @Param: _TYPE
|
|
// @DisplayName: Rangefinder type
|
|
// @Description: what type of rangefinder is connected
|
|
// @Values: 0:None,1:Auto,2:Analog,3:MaxbotixI2C,4:PulsedLightI2C,5:PX4
|
|
AP_GROUPINFO("_TYPE", 0, RangeFinder, _type[0], 0),
|
|
|
|
// @Param: _PIN
|
|
// @DisplayName: Rangefinder pin
|
|
// @Description: Analog pin that rangefinder is connected to. Set this to 0..9 for the APM2 analog pins. Set to 64 on an APM1 for the dedicated 'airspeed' port on the end of the board. Set to 11 on PX4 for the analog 'airspeed' port. Set to 15 on the Pixhawk for the analog 'airspeed' port.
|
|
AP_GROUPINFO("_PIN", 1, RangeFinder, _pin[0], -1),
|
|
|
|
// @Param: _SCALING
|
|
// @DisplayName: Rangefinder scaling
|
|
// @Description: Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.
|
|
// @Units: meters/Volt
|
|
// @Increment: 0.001
|
|
AP_GROUPINFO("_SCALING", 2, RangeFinder, _scaling[0], 3.0),
|
|
|
|
// @Param: _OFFSET
|
|
// @DisplayName: rangefinder offset
|
|
// @Description: Offset in volts for zero distance
|
|
// @Units: Volts
|
|
// @Increment: 0.001
|
|
AP_GROUPINFO("_OFFSET", 3, RangeFinder, _offset[0], 0.0),
|
|
|
|
// @Param: _FUNCTION
|
|
// @DisplayName: Rangefinder function
|
|
// @Description: Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.
|
|
// @Values: 0:Linear,1:Inverted,2:Hyperbolic
|
|
AP_GROUPINFO("_FUNCTION", 4, RangeFinder, _function[0], 0),
|
|
|
|
// @Param: _MIN_CM
|
|
// @DisplayName: Rangefinder minimum distance
|
|
// @Description: minimum distance in centimeters that rangefinder can reliably read
|
|
// @Units: centimeters
|
|
// @Increment: 1
|
|
AP_GROUPINFO("_MIN_CM", 5, RangeFinder, _min_distance_cm[0], 20),
|
|
|
|
// @Param: _MAX_CM
|
|
// @DisplayName: Rangefinder maximum distance
|
|
// @Description: maximum distance in centimeters that rangefinder can reliably read
|
|
// @Units: centimeters
|
|
// @Increment: 1
|
|
AP_GROUPINFO("_MAX_CM", 6, RangeFinder, _max_distance_cm[0], 700),
|
|
|
|
// @Param: _STOP_PIN
|
|
// @DisplayName: Rangefinder stop pin
|
|
// @Description: Digital pin that enables/disables rangefinder measurement for an analog sonar. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the sonar and set to 0 to disable it. This can be used to ensure that multiple sonars don't interfere with each other.
|
|
AP_GROUPINFO("_STOP_PIN", 7, RangeFinder, _stop_pin[0], -1),
|
|
|
|
// @Param: _SETTLE_MS
|
|
// @DisplayName: Sonar settle time
|
|
// @Description: The time in milliseconds that the sonar reading takes to settle. This is only used when a STOP_PIN is specified. It determines how long we have to wait for the sonar to give a reading after we set the STOP_PIN high. For a sonar with a range of around 7m this would need to be around 50 milliseconds to allow for the sonar pulse to travel to the target and back again.
|
|
// @Units: milliseconds
|
|
// @Increment: 1
|
|
AP_GROUPINFO("_SETTLE_MS", 8, RangeFinder, _settle_time_ms[0], 0),
|
|
|
|
// 9..12 left for future expansion
|
|
|
|
#if RANGEFINDER_MAX_INSTANCES > 1
|
|
// @Param: 2_PIN
|
|
// @DisplayName: Rangefinder pin
|
|
// @Description: Analog pin that rangefinder is connected to. Set this to 0..9 for the APM2 analog pins. Set to 64 on an APM1 for the dedicated 'airspeed' port on the end of the board. Set to 11 on PX4 for the analog 'airspeed' port. Set to 15 on the Pixhawk for the analog 'airspeed' port.
|
|
AP_GROUPINFO("2_PIN", 13, RangeFinder, _pin[1], -1),
|
|
|
|
// @Param: 2_SCALING
|
|
// @DisplayName: Rangefinder scaling
|
|
// @Description: Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.
|
|
// @Units: meters/Volt
|
|
// @Increment: 0.001
|
|
AP_GROUPINFO("2_SCALING", 14, RangeFinder, _scaling[1], 3.0),
|
|
|
|
// @Param: 2_OFFSET
|
|
// @DisplayName: rangefinder offset
|
|
// @Description: Offset in volts for zero distance
|
|
// @Units: Volts
|
|
// @Increment: 0.001
|
|
AP_GROUPINFO("2_OFFSET", 15, RangeFinder, _offset[1], 0.0),
|
|
|
|
// @Param: 2_FUNCTION
|
|
// @DisplayName: Rangefinder function
|
|
// @Description: Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.
|
|
// @Values: 0:Linear,1:Inverted,2:Hyperbolic
|
|
AP_GROUPINFO("2_FUNCTION", 16, RangeFinder, _function[1], 0),
|
|
|
|
// @Param: 2_MIN_CM
|
|
// @DisplayName: Rangefinder minimum distance
|
|
// @Description: minimum distance in centimeters that rangefinder can reliably read
|
|
// @Units: centimeters
|
|
// @Increment: 1
|
|
AP_GROUPINFO("2_MIN_CM", 17, RangeFinder, _min_distance_cm[1], 20),
|
|
|
|
// @Param: 2_MAX_CM
|
|
// @DisplayName: Rangefinder maximum distance
|
|
// @Description: maximum distance in centimeters that rangefinder can reliably read
|
|
// @Units: centimeters
|
|
// @Increment: 1
|
|
AP_GROUPINFO("2_MAX_CM", 18, RangeFinder, _max_distance_cm[1], 700),
|
|
|
|
// @Param: 2_STOP_PIN
|
|
// @DisplayName: Rangefinder stop pin
|
|
// @Description: Digital pin that enables/disables rangefinder measurement for an analog sonar. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the sonar and set to 0 to disable it. This can be used to ensure that multiple sonars don't interfere with each other.
|
|
AP_GROUPINFO("2_STOP_PIN", 19, RangeFinder, _stop_pin[1], -1),
|
|
|
|
// @Param: 2_SETTLE_MS
|
|
// @DisplayName: Sonar settle time
|
|
// @Description: The time in milliseconds that the sonar reading takes to settle. This is only used when a STOP_PIN is specified. It determines how long we have to wait for the sonar to give a reading after we set the STOP_PIN high. For a sonar with a range of around 7m this would need to be around 50 milliseconds to allow for the sonar pulse to travel to the target and back again.
|
|
// @Units: milliseconds
|
|
// @Increment: 1
|
|
AP_GROUPINFO("2_SETTLE_MS", 20, RangeFinder, _settle_time_ms[1], 0),
|
|
#endif
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
/*
|
|
initialise the RangeFinder class. We do detection of attached range
|
|
finders here. For now we won't allow for hot-plugging of
|
|
rangefinders.
|
|
*/
|
|
void RangeFinder::init(void)
|
|
{
|
|
if (num_instances != 0) {
|
|
// init called a 2nd time?
|
|
return;
|
|
}
|
|
for (uint8_t i=0; i<RANGEFINDER_MAX_INSTANCES; i++) {
|
|
detect_instance(i);
|
|
if (drivers[i] != NULL) {
|
|
// we loaded a driver for this instance, so it must be
|
|
// present (although it may not be healthy)
|
|
num_instances = i+1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
update RangeFinder state for all instances. This should be called at
|
|
around 10Hz by main loop
|
|
*/
|
|
void RangeFinder::update(void)
|
|
{
|
|
for (uint8_t i=0; i<num_instances; i++) {
|
|
if (drivers[i] != NULL) {
|
|
if (_type[i] == RangeFinder_TYPE_NONE) {
|
|
// allow user to disable a rangefinder at runtime
|
|
state[i].healthy = false;
|
|
continue;
|
|
}
|
|
drivers[i]->update();
|
|
}
|
|
}
|
|
|
|
// work out primary instance - first healthy sensor
|
|
for (int8_t i=num_instances-1; i>=0; i--) {
|
|
if (drivers[i] != NULL && state[i].healthy) {
|
|
primary_instance = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
detect if an instance of a rangefinder is connected.
|
|
*/
|
|
void RangeFinder::detect_instance(uint8_t instance)
|
|
{
|
|
if (_type[instance] == RangeFinder_TYPE_AUTO || _type[instance] == RangeFinder_TYPE_ANALOG) {
|
|
if (AP_RangeFinder_analog::detect(*this, instance)) {
|
|
state[instance].instance = instance;
|
|
drivers[instance] = new AP_RangeFinder_analog(*this, instance, state[instance]);
|
|
}
|
|
}
|
|
}
|
|
|