Ardupilot2/libraries/AP_HAL_ChibiOS/Scheduler.cpp
2018-12-31 08:00:14 +11:00

475 lines
13 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include <AP_HAL/AP_HAL.h>
#include "AP_HAL_ChibiOS.h"
#include "Scheduler.h"
#include "Util.h"
#include <AP_HAL_ChibiOS/UARTDriver.h>
#include <AP_HAL_ChibiOS/AnalogIn.h>
#include <AP_HAL_ChibiOS/Storage.h>
#include <AP_HAL_ChibiOS/RCOutput.h>
#include <AP_HAL_ChibiOS/RCInput.h>
#include <AP_HAL_ChibiOS/CAN.h>
#if CH_CFG_USE_DYNAMIC == TRUE
#include <DataFlash/DataFlash.h>
#include <AP_Scheduler/AP_Scheduler.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include "hwdef/common/stm32_util.h"
#include "shared_dma.h"
#include "sdcard.h"
#if HAL_WITH_IO_MCU
#include <AP_IOMCU/AP_IOMCU.h>
extern AP_IOMCU iomcu;
#endif
using namespace ChibiOS;
extern const AP_HAL::HAL& hal;
#ifndef HAL_NO_TIMER_THREAD
THD_WORKING_AREA(_timer_thread_wa, TIMER_THD_WA_SIZE);
#endif
#ifndef HAL_NO_RCIN_THREAD
THD_WORKING_AREA(_rcin_thread_wa, RCIN_THD_WA_SIZE);
#endif
#ifndef HAL_USE_EMPTY_IO
THD_WORKING_AREA(_io_thread_wa, IO_THD_WA_SIZE);
#endif
#ifndef HAL_USE_EMPTY_STORAGE
THD_WORKING_AREA(_storage_thread_wa, STORAGE_THD_WA_SIZE);
#endif
Scheduler::Scheduler()
{
}
void Scheduler::init()
{
chBSemObjectInit(&_timer_semaphore, false);
chBSemObjectInit(&_io_semaphore, false);
#ifndef HAL_NO_TIMER_THREAD
// setup the timer thread - this will call tasks at 1kHz
_timer_thread_ctx = chThdCreateStatic(_timer_thread_wa,
sizeof(_timer_thread_wa),
APM_TIMER_PRIORITY, /* Initial priority. */
_timer_thread, /* Thread function. */
this); /* Thread parameter. */
#endif
#ifndef HAL_NO_RCIN_THREAD
// setup the RCIN thread - this will call tasks at 1kHz
_rcin_thread_ctx = chThdCreateStatic(_rcin_thread_wa,
sizeof(_rcin_thread_wa),
APM_RCIN_PRIORITY, /* Initial priority. */
_rcin_thread, /* Thread function. */
this); /* Thread parameter. */
#endif
#ifndef HAL_USE_EMPTY_IO
// the IO thread runs at lower priority
_io_thread_ctx = chThdCreateStatic(_io_thread_wa,
sizeof(_io_thread_wa),
APM_IO_PRIORITY, /* Initial priority. */
_io_thread, /* Thread function. */
this); /* Thread parameter. */
#endif
#ifndef HAL_USE_EMPTY_STORAGE
// the storage thread runs at just above IO priority
_storage_thread_ctx = chThdCreateStatic(_storage_thread_wa,
sizeof(_storage_thread_wa),
APM_STORAGE_PRIORITY, /* Initial priority. */
_storage_thread, /* Thread function. */
this); /* Thread parameter. */
#endif
}
void Scheduler::delay_microseconds(uint16_t usec)
{
if (usec == 0) { //chibios faults with 0us sleep
return;
}
uint32_t ticks;
ticks = chTimeUS2I(usec);
if (ticks == 0) {
// calling with ticks == 0 causes a hard fault on ChibiOS
ticks = 1;
}
chThdSleep(ticks); //Suspends Thread for desired microseconds
}
/*
wrapper around sem_post that boosts main thread priority
*/
static void set_high_priority()
{
#if APM_MAIN_PRIORITY_BOOST != APM_MAIN_PRIORITY
hal_chibios_set_priority(APM_MAIN_PRIORITY_BOOST);
#endif
}
/*
return the main thread to normal priority
*/
void Scheduler::boost_end(void)
{
#if APM_MAIN_PRIORITY_BOOST != APM_MAIN_PRIORITY
if (in_main_thread() && _priority_boosted) {
_priority_boosted = false;
hal_chibios_set_priority(APM_MAIN_PRIORITY);
}
#endif
}
/*
a variant of delay_microseconds that boosts priority to
APM_MAIN_PRIORITY_BOOST for APM_MAIN_PRIORITY_BOOST_USEC
microseconds when the time completes. This significantly improves
the regularity of timing of the main loop
*/
void Scheduler::delay_microseconds_boost(uint16_t usec)
{
if (in_main_thread()) {
set_high_priority();
_priority_boosted = true;
}
delay_microseconds(usec); //Suspends Thread for desired microseconds
_called_boost = true;
}
/*
return true if delay_microseconds_boost() has been called since last check
*/
bool Scheduler::check_called_boost(void)
{
if (!_called_boost) {
return false;
}
_called_boost = false;
return true;
}
void Scheduler::delay(uint16_t ms)
{
uint64_t start = AP_HAL::micros64();
while ((AP_HAL::micros64() - start)/1000 < ms) {
delay_microseconds(1000);
if (_min_delay_cb_ms <= ms) {
if (in_main_thread()) {
call_delay_cb();
}
}
}
}
void Scheduler::register_timer_process(AP_HAL::MemberProc proc)
{
chBSemWait(&_timer_semaphore);
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
chBSemSignal(&_timer_semaphore);
return;
}
}
if (_num_timer_procs < CHIBIOS_SCHEDULER_MAX_TIMER_PROCS) {
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
} else {
hal.console->printf("Out of timer processes\n");
}
chBSemSignal(&_timer_semaphore);
}
void Scheduler::register_io_process(AP_HAL::MemberProc proc)
{
chBSemWait(&_io_semaphore);
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
chBSemSignal(&_io_semaphore);
return;
}
}
if (_num_io_procs < CHIBIOS_SCHEDULER_MAX_TIMER_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
} else {
hal.console->printf("Out of IO processes\n");
}
chBSemSignal(&_io_semaphore);
}
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void Scheduler::reboot(bool hold_in_bootloader)
{
// disarm motors to ensure they are off during a bootloader upload
hal.rcout->force_safety_on();
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.shutdown();
}
#endif
#ifndef NO_DATAFLASH
//stop logging
DataFlash_Class::instance()->StopLogging();
// stop sdcard driver, if active
sdcard_stop();
#endif
#if defined(HAL_USE_RTC) && HAL_USE_RTC
// setup RTC for fast reboot
set_fast_reboot(hold_in_bootloader?RTC_BOOT_HOLD:RTC_BOOT_FAST);
#endif
// disable all interrupt sources
port_disable();
// reboot
NVIC_SystemReset();
}
void Scheduler::_run_timers()
{
if (_in_timer_proc) {
return;
}
_in_timer_proc = true;
int num_procs = 0;
chBSemWait(&_timer_semaphore);
num_procs = _num_timer_procs;
chBSemSignal(&_timer_semaphore);
// now call the timer based drivers
for (int i = 0; i < num_procs; i++) {
if (_timer_proc[i]) {
_timer_proc[i]();
}
}
// and the failsafe, if one is setup
if (_failsafe != nullptr) {
_failsafe();
}
#if HAL_USE_ADC == TRUE && !defined(HAL_DISABLE_ADC_DRIVER)
// process analog input
((AnalogIn *)hal.analogin)->_timer_tick();
#endif
_in_timer_proc = false;
}
void Scheduler::_timer_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
chRegSetThreadName("apm_timer");
while (!sched->_hal_initialized) {
sched->delay_microseconds(1000);
}
while (true) {
sched->delay_microseconds(1000);
// run registered timers
sched->_run_timers();
// process any pending RC output requests
hal.rcout->timer_tick();
}
}
void Scheduler::_rcin_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
chRegSetThreadName("apm_rcin");
while (!sched->_hal_initialized) {
sched->delay_microseconds(20000);
}
while (true) {
sched->delay_microseconds(2500);
((RCInput *)hal.rcin)->_timer_tick();
}
}
void Scheduler::_run_io(void)
{
if (_in_io_proc) {
return;
}
_in_io_proc = true;
int num_procs = 0;
chBSemWait(&_io_semaphore);
num_procs = _num_io_procs;
chBSemSignal(&_io_semaphore);
// now call the IO based drivers
for (int i = 0; i < num_procs; i++) {
if (_io_proc[i]) {
_io_proc[i]();
}
}
_in_io_proc = false;
}
void Scheduler::_io_thread(void* arg)
{
Scheduler *sched = (Scheduler *)arg;
chRegSetThreadName("apm_io");
while (!sched->_hal_initialized) {
sched->delay_microseconds(1000);
}
uint32_t last_sd_start_ms = AP_HAL::millis();
while (true) {
sched->delay_microseconds(1000);
// run registered IO processes
sched->_run_io();
if (!hal.util->get_soft_armed()) {
// if sdcard hasn't mounted then retry it every 3s in the IO
// thread when disarmed
uint32_t now = AP_HAL::millis();
if (now - last_sd_start_ms > 3000) {
last_sd_start_ms = now;
sdcard_retry();
}
}
}
}
void Scheduler::_storage_thread(void* arg)
{
Scheduler *sched = (Scheduler *)arg;
chRegSetThreadName("apm_storage");
while (!sched->_hal_initialized) {
sched->delay_microseconds(10000);
}
while (true) {
sched->delay_microseconds(10000);
// process any pending storage writes
hal.storage->_timer_tick();
}
}
bool Scheduler::in_main_thread() const
{
return get_main_thread() == chThdGetSelfX();
}
void Scheduler::system_initialized()
{
if (_initialized) {
AP_HAL::panic("PANIC: scheduler::system_initialized called"
"more than once");
}
_initialized = true;
}
/*
disable interrupts and return a context that can be used to
restore the interrupt state. This can be used to protect
critical regions
*/
void *Scheduler::disable_interrupts_save(void)
{
return (void *)(uintptr_t)chSysGetStatusAndLockX();
}
/*
restore interrupt state from disable_interrupts_save()
*/
void Scheduler::restore_interrupts(void *state)
{
chSysRestoreStatusX((syssts_t)(uintptr_t)state);
}
/*
trampoline for thread create
*/
void Scheduler::thread_create_trampoline(void *ctx)
{
AP_HAL::MemberProc *t = (AP_HAL::MemberProc *)ctx;
(*t)();
free(t);
}
/*
create a new thread
*/
bool Scheduler::thread_create(AP_HAL::MemberProc proc, const char *name, uint32_t stack_size, priority_base base, int8_t priority)
{
// take a copy of the MemberProc, it is freed after thread exits
AP_HAL::MemberProc *tproc = (AP_HAL::MemberProc *)malloc(sizeof(proc));
if (!tproc) {
return false;
}
*tproc = proc;
uint8_t thread_priority = APM_IO_PRIORITY;
static const struct {
priority_base base;
uint8_t p;
} priority_map[] = {
{ PRIORITY_BOOST, APM_MAIN_PRIORITY_BOOST},
{ PRIORITY_MAIN, APM_MAIN_PRIORITY},
{ PRIORITY_SPI, APM_SPI_PRIORITY},
{ PRIORITY_I2C, APM_I2C_PRIORITY},
{ PRIORITY_CAN, APM_CAN_PRIORITY},
{ PRIORITY_TIMER, APM_TIMER_PRIORITY},
{ PRIORITY_RCIN, APM_RCIN_PRIORITY},
{ PRIORITY_IO, APM_IO_PRIORITY},
{ PRIORITY_UART, APM_UART_PRIORITY},
{ PRIORITY_STORAGE, APM_STORAGE_PRIORITY},
{ PRIORITY_SCRIPTING, APM_SCRIPTING_PRIORITY},
};
for (uint8_t i=0; i<ARRAY_SIZE(priority_map); i++) {
if (priority_map[i].base == base) {
thread_priority = constrain_int16(priority_map[i].p + priority, LOWPRIO, HIGHPRIO);
break;
}
}
thread_t *thread_ctx = chThdCreateFromHeap(NULL,
THD_WORKING_AREA_SIZE(stack_size),
name,
thread_priority,
thread_create_trampoline,
tproc);
if (thread_ctx == nullptr) {
free(tproc);
return false;
}
return true;
}
#endif // CH_CFG_USE_DYNAMIC