Ardupilot2/libraries/AP_InertialNav/AP_InertialNav.cpp

299 lines
8.6 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <FastSerial.h>
#include <AP_InertialNav.h>
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include <wiring.h>
#endif
// table of user settable parameters
const AP_Param::GroupInfo AP_InertialNav::var_info[] PROGMEM = {
// index 0 and 1 are for old parameters that are no longer used
// @Param: ACORR
// @DisplayName: Inertial Nav calculated accelerometer corrections
// @Description: calculated accelerometer corrections
// @Increment: 1
AP_GROUPINFO("ACORR", 0, AP_InertialNav, _accel_correction, 0),
// @Param: TC_XY
// @DisplayName: Horizontal Time Constant
// @Description: Time constnat for GPS and accel mixing. Higher TC increases GPS impact on position
// @Range: 0 10
// @Increment: 0.1
AP_GROUPINFO("TC_XY", 1, AP_InertialNav, _time_constant_xy, AP_INTERTIALNAV_TC_XY),
// @Param: TC_Z
// @DisplayName: Vertical Time Constant
// @Description: Time constnat for baro and accel mixing. Higher TC increases barometers impact on altitude
// @Range: 0 10
// @Increment: 0.1
AP_GROUPINFO("TC_Z", 2, AP_InertialNav, _time_constant_z, AP_INTERTIALNAV_TC_Z),
AP_GROUPEND
};
// save_params - save all parameters to eeprom
void AP_InertialNav::save_params()
{
Vector3f accel_corr = _comp_filter.get_1st_order_correction();
accel_corr.x = constrain(accel_corr.x,-200,200);
accel_corr.y = constrain(accel_corr.y,-200,200);
accel_corr.z = constrain(accel_corr.z,-200,200);
_accel_correction.set_and_save(accel_corr);
}
// set time constant - set timeconstant used by complementary filter
void AP_InertialNav::set_time_constant_xy( float time_constant_in_seconds )
{
// ensure it's a reasonable value
if( time_constant_in_seconds > 0 && time_constant_in_seconds < 30 ) {
_time_constant_xy = time_constant_in_seconds;
_comp_filter.update_gains(_time_constant_xy, _time_constant_z);
}
}
// set time constant - set timeconstant used by complementary filter
void AP_InertialNav::set_time_constant_z( float time_constant_in_seconds )
{
// ensure it's a reasonable value
if( time_constant_in_seconds > 0 && time_constant_in_seconds < 30 ) {
_time_constant_z = time_constant_in_seconds;
_comp_filter.update_gains(_time_constant_xy, _time_constant_z);
}
}
// check_baro - check if new baro readings have arrived and use them to correct vertical accelerometer offsets
void AP_InertialNav::check_baro()
{
uint32_t baro_update_time;
if( _baro == NULL )
return;
// calculate time since last baro reading
baro_update_time = _baro->get_last_update();
if( baro_update_time != _baro_last_update ) {
float dt = (float)(baro_update_time - _baro_last_update) / 1000.0;
// call correction method
correct_with_baro(_baro->get_altitude()*100, dt);
_baro_last_update = baro_update_time;
}
}
// correct_with_baro - modifies accelerometer offsets using barometer. dt is time since last baro reading
void AP_InertialNav::correct_with_baro(float baro_alt, float dt)
{
static uint8_t first_reads = 0;
// discard samples where dt is too large
if( dt > 0.2 ) {
return;
}
// discard first 10 reads but perform some initialisation
if( first_reads <= 10 ) {
_comp_filter.set_3rd_order_z(baro_alt);
//_comp_filter.set_2nd_order_z(climb_rate);
first_reads++;
}
// get dcm matrix
Matrix3f dcm = _ahrs->get_dcm_matrix();
// provide baro alt to filter
_comp_filter.correct_3rd_order_z(baro_alt, dcm, dt);
}
// set_current_position - all internal calculations are recorded as the distances from this point
void AP_InertialNav::set_current_position(int32_t lon, int32_t lat)
{
// set base location
_base_lon = lon;
_base_lat = lat;
// set longitude->meters scaling
// this is used to offset the shrinking longitude as we go towards the poles
_lon_to_m_scaling = cos((fabs((float)lat)/10000000.0) * 0.0174532925);
// set estimated position to this position
_comp_filter.set_3rd_order_xy(0,0);
// set xy as enabled
_xy_enabled = true;
}
// check_gps - check if new gps readings have arrived and use them to correct position estimates
void AP_InertialNav::check_gps()
{
uint32_t gps_time;
uint32_t now;
if( _gps_ptr == NULL || *_gps_ptr == NULL )
return;
// get time according to the gps
gps_time = (*_gps_ptr)->time;
// compare gps time to previous reading
if( gps_time != _gps_last_time ) {
// calculate time since last gps reading
now = millis();
float dt = (float)(now - _gps_last_update) / 1000.0;
// call position correction method
correct_with_gps((*_gps_ptr)->longitude, (*_gps_ptr)->latitude, dt);
// record gps time and system time of this update
_gps_last_time = gps_time;
_gps_last_update = now;
}
}
// correct_with_gps - modifies accelerometer offsets using gps. dt is time since last gps update
void AP_InertialNav::correct_with_gps(int32_t lon, int32_t lat, float dt)
{
float x,y;
// discard samples where dt is too large
if( dt > 1.0 || dt == 0 || !_xy_enabled) {
return;
}
// calculate distance from home
//x = (float)(lat - _base_lat) * 1.113195;
//y = (float)(lon - _base_lon) * _lon_to_m_scaling * 1.113195;
x = (float)(lat - _base_lat);
y = (float)(lon - _base_lon) * _lon_to_m_scaling;
// convert accelerometer readings to earth frame
Matrix3f dcm = _ahrs->get_dcm_matrix();
// call comp filter's correct xy
_comp_filter.correct_3rd_order_xy(-x, -y, dcm, dt);
//Notes: with +x above, accel lat comes out reversed
}
// update - updates velocities and positions using latest info from ahrs, ins and barometer if new data is available;
void AP_InertialNav::update(float dt)
{
// discard samples where dt is too large
if( dt > 0.1 ) {
return;
}
// check barometer
check_baro();
// check gps
check_gps();
// read acclerometer values
_accel_bf = _ins->get_accel();
// convert accelerometer readings to earth frame
Matrix3f dcm = _ahrs->get_dcm_matrix();
_accel_ef = dcm * _accel_bf;
// remove influence of gravity
_accel_ef.z += AP_INTERTIALNAV_GRAVITY;
_accel_ef *= 100;
// remove xy if not enabled
if( !_xy_enabled ) {
_accel_ef.x = 0;
_accel_ef.y = 0;
}
// provide accelerometer values to filter
_comp_filter.add_1st_order_sample(_accel_ef);
// recalculate estimates
_comp_filter.calculate(dt, dcm);
// get position and velocity estimates
_position = _comp_filter.get_3rd_order_estimate();
_velocity = _comp_filter.get_2nd_order_estimate();
}
// position_ok - return true if position has been initialised and have received gps data within 3 seconds
bool AP_InertialNav::position_ok()
{
return _xy_enabled && (millis() - _gps_last_update < 3000);
}
// get accel based latitude
int32_t AP_InertialNav::get_latitude()
{
// make sure we've been initialised
if( !_xy_enabled ) {
return 0;
}
//return _base_lat - (int32_t)(_position.x / 1.113195);
return _base_lat - (int32_t)_position.x;
}
// get accel based longitude
int32_t AP_InertialNav::get_longitude()
{
// make sure we've been initialised
if( !_xy_enabled ) {
return 0;
}
//return _base_lon - (int32_t)(_position.y / (_lon_to_m_scaling * 1.113195) );
return _base_lon - (int32_t)(_position.y / _lon_to_m_scaling );
}
// get accel based latitude
float AP_InertialNav::get_latitude_diff()
{
// make sure we've been initialised
if( !_xy_enabled ) {
return 0;
}
//return _base_lat + (int32_t)_position.x;
//return -_position.x / 1.113195;
return -_position.x;
}
// get accel based longitude
float AP_InertialNav::get_longitude_diff()
{
// make sure we've been initialised
if( !_xy_enabled ) {
return 0;
}
//return _base_lon - (int32_t)(_position.x / _lon_to_m_scaling);
//return -_position.y / (_lon_to_m_scaling * 1.113195);
return -_position.y / _lon_to_m_scaling;
}
// get velocity in latitude & longitude directions
float AP_InertialNav::get_latitude_velocity()
{
// make sure we've been initialised
if( !_xy_enabled ) {
return 0;
}
return -_velocity.x;
// Note: is +_velocity.x the output velocity in logs is in reverse direction from accel lat
}
float AP_InertialNav::get_longitude_velocity()
{
// make sure we've been initialised
if( !_xy_enabled ) {
return 0;
}
return -_velocity.y;
}