Ardupilot2/libraries/AP_Common/Location.cpp
2021-03-30 08:56:35 +09:00

373 lines
10 KiB
C++

/*
* Location.cpp
*/
#include "Location.h"
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Terrain/AP_Terrain.h>
AP_Terrain *Location::_terrain = nullptr;
/// constructors
Location::Location()
{
zero();
}
const Location definitely_zero{};
bool Location::is_zero(void) const
{
return !memcmp(this, &definitely_zero, sizeof(*this));
}
void Location::zero(void)
{
memset(this, 0, sizeof(*this));
}
// Construct location using position (NEU) from ekf_origin for the given altitude frame
Location::Location(int32_t latitude, int32_t longitude, int32_t alt_in_cm, AltFrame frame)
{
zero();
lat = latitude;
lng = longitude;
set_alt_cm(alt_in_cm, frame);
}
Location::Location(const Vector3f &ekf_offset_neu, AltFrame frame)
{
// store alt and alt frame
set_alt_cm(ekf_offset_neu.z, frame);
// calculate lat, lon
Location ekf_origin;
if (AP::ahrs().get_origin(ekf_origin)) {
lat = ekf_origin.lat;
lng = ekf_origin.lng;
offset(ekf_offset_neu.x / 100.0f, ekf_offset_neu.y / 100.0f);
}
}
void Location::set_alt_cm(int32_t alt_cm, AltFrame frame)
{
alt = alt_cm;
relative_alt = false;
terrain_alt = false;
origin_alt = false;
switch (frame) {
case AltFrame::ABSOLUTE:
// do nothing
break;
case AltFrame::ABOVE_HOME:
relative_alt = true;
break;
case AltFrame::ABOVE_ORIGIN:
origin_alt = true;
break;
case AltFrame::ABOVE_TERRAIN:
// we mark it as a relative altitude, as it doesn't have
// home alt added
relative_alt = true;
terrain_alt = true;
break;
}
}
// converts altitude to new frame
bool Location::change_alt_frame(AltFrame desired_frame)
{
int32_t new_alt_cm;
if (!get_alt_cm(desired_frame, new_alt_cm)) {
return false;
}
set_alt_cm(new_alt_cm, desired_frame);
return true;
}
// get altitude frame
Location::AltFrame Location::get_alt_frame() const
{
if (terrain_alt) {
return AltFrame::ABOVE_TERRAIN;
}
if (origin_alt) {
return AltFrame::ABOVE_ORIGIN;
}
if (relative_alt) {
return AltFrame::ABOVE_HOME;
}
return AltFrame::ABSOLUTE;
}
/// get altitude in desired frame
bool Location::get_alt_cm(AltFrame desired_frame, int32_t &ret_alt_cm) const
{
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (!initialised()) {
AP_HAL::panic("Should not be called on invalid location");
}
#endif
Location::AltFrame frame = get_alt_frame();
// shortcut if desired and underlying frame are the same
if (desired_frame == frame) {
ret_alt_cm = alt;
return true;
}
// check for terrain altitude
float alt_terr_cm = 0;
if (frame == AltFrame::ABOVE_TERRAIN || desired_frame == AltFrame::ABOVE_TERRAIN) {
#if AP_TERRAIN_AVAILABLE
if (_terrain == nullptr || !_terrain->height_amsl(*(Location *)this, alt_terr_cm, true)) {
return false;
}
// convert terrain alt to cm
alt_terr_cm *= 100.0f;
#else
return false;
#endif
}
// convert alt to absolute
int32_t alt_abs = 0;
switch (frame) {
case AltFrame::ABSOLUTE:
alt_abs = alt;
break;
case AltFrame::ABOVE_HOME:
if (!AP::ahrs().home_is_set()) {
return false;
}
alt_abs = alt + AP::ahrs().get_home().alt;
break;
case AltFrame::ABOVE_ORIGIN:
{
// fail if we cannot get ekf origin
Location ekf_origin;
if (!AP::ahrs().get_origin(ekf_origin)) {
return false;
}
alt_abs = alt + ekf_origin.alt;
}
break;
case AltFrame::ABOVE_TERRAIN:
alt_abs = alt + alt_terr_cm;
break;
}
// convert absolute to desired frame
switch (desired_frame) {
case AltFrame::ABSOLUTE:
ret_alt_cm = alt_abs;
return true;
case AltFrame::ABOVE_HOME:
if (!AP::ahrs().home_is_set()) {
return false;
}
ret_alt_cm = alt_abs - AP::ahrs().get_home().alt;
return true;
case AltFrame::ABOVE_ORIGIN:
{
// fail if we cannot get ekf origin
Location ekf_origin;
if (!AP::ahrs().get_origin(ekf_origin)) {
return false;
}
ret_alt_cm = alt_abs - ekf_origin.alt;
return true;
}
case AltFrame::ABOVE_TERRAIN:
ret_alt_cm = alt_abs - alt_terr_cm;
return true;
}
return false;
}
bool Location::get_vector_xy_from_origin_NE(Vector2f &vec_ne) const
{
Location ekf_origin;
if (!AP::ahrs().get_origin(ekf_origin)) {
return false;
}
vec_ne.x = (lat-ekf_origin.lat) * LATLON_TO_CM;
vec_ne.y = (lng-ekf_origin.lng) * LATLON_TO_CM * ekf_origin.longitude_scale();
return true;
}
bool Location::get_vector_from_origin_NEU(Vector3f &vec_neu) const
{
// convert lat, lon
Vector2f vec_ne;
if (!get_vector_xy_from_origin_NE(vec_ne)) {
return false;
}
vec_neu.x = vec_ne.x;
vec_neu.y = vec_ne.y;
// convert altitude
int32_t alt_above_origin_cm = 0;
if (!get_alt_cm(AltFrame::ABOVE_ORIGIN, alt_above_origin_cm)) {
return false;
}
vec_neu.z = alt_above_origin_cm;
return true;
}
// return distance in meters between two locations
float Location::get_distance(const struct Location &loc2) const
{
float dlat = (float)(loc2.lat - lat);
float dlng = ((float)(loc2.lng - lng)) * loc2.longitude_scale();
return norm(dlat, dlng) * LOCATION_SCALING_FACTOR;
}
/*
return the distance in meters in North/East plane as a N/E vector
from loc1 to loc2
*/
Vector2f Location::get_distance_NE(const Location &loc2) const
{
return Vector2f((loc2.lat - lat) * LOCATION_SCALING_FACTOR,
(loc2.lng - lng) * LOCATION_SCALING_FACTOR * longitude_scale());
}
// return the distance in meters in North/East/Down plane as a N/E/D vector to loc2
Vector3f Location::get_distance_NED(const Location &loc2) const
{
return Vector3f((loc2.lat - lat) * LOCATION_SCALING_FACTOR,
(loc2.lng - lng) * LOCATION_SCALING_FACTOR * longitude_scale(),
(alt - loc2.alt) * 0.01f);
}
// extrapolate latitude/longitude given distances (in meters) north and east
void Location::offset(float ofs_north, float ofs_east)
{
const int32_t dlat = ofs_north * LOCATION_SCALING_FACTOR_INV;
const int32_t dlng = (ofs_east * LOCATION_SCALING_FACTOR_INV) / longitude_scale();
lat += dlat;
lng += dlng;
}
/*
* extrapolate latitude/longitude given bearing and distance
* Note that this function is accurate to about 1mm at a distance of
* 100m. This function has the advantage that it works in relative
* positions, so it keeps the accuracy even when dealing with small
* distances and floating point numbers
*/
void Location::offset_bearing(float bearing, float distance)
{
const float ofs_north = cosf(radians(bearing)) * distance;
const float ofs_east = sinf(radians(bearing)) * distance;
offset(ofs_north, ofs_east);
}
// extrapolate latitude/longitude given bearing, pitch and distance
void Location::offset_bearing_and_pitch(float bearing, float pitch, float distance)
{
const float ofs_north = cosf(radians(pitch)) * cosf(radians(bearing)) * distance;
const float ofs_east = cosf(radians(pitch)) * sinf(radians(bearing)) * distance;
offset(ofs_north, ofs_east);
const int32_t dalt = sinf(radians(pitch)) * distance *100.0f;
alt += dalt;
}
float Location::longitude_scale() const
{
float scale = cosf(lat * (1.0e-7f * DEG_TO_RAD));
return MAX(scale, 0.01f);
}
/*
* convert invalid waypoint with useful data. return true if location changed
*/
bool Location::sanitize(const Location &defaultLoc)
{
bool has_changed = false;
// convert lat/lng=0 to mean current point
if (lat == 0 && lng == 0) {
lat = defaultLoc.lat;
lng = defaultLoc.lng;
has_changed = true;
}
// convert relative alt=0 to mean current alt
if (alt == 0 && relative_alt) {
relative_alt = false;
alt = defaultLoc.alt;
has_changed = true;
}
// limit lat/lng to appropriate ranges
if (!check_latlng()) {
lat = defaultLoc.lat;
lng = defaultLoc.lng;
has_changed = true;
}
return has_changed;
}
// make sure we know what size the Location object is:
assert_storage_size<Location, 16> _assert_storage_size_Location;
// return bearing in centi-degrees from location to loc2
int32_t Location::get_bearing_to(const struct Location &loc2) const
{
const int32_t off_x = loc2.lng - lng;
const int32_t off_y = (loc2.lat - lat) / loc2.longitude_scale();
int32_t bearing = 9000 + atan2f(-off_y, off_x) * DEGX100;
if (bearing < 0) {
bearing += 36000;
}
return bearing;
}
/*
return true if lat and lng match. Ignores altitude and options
*/
bool Location::same_latlon_as(const Location &loc2) const
{
return (lat == loc2.lat) && (lng == loc2.lng);
}
// return true when lat and lng are within range
bool Location::check_latlng() const
{
return check_lat(lat) && check_lng(lng);
}
// see if location is past a line perpendicular to
// the line between point1 and point2 and passing through point2.
// If point1 is our previous waypoint and point2 is our target waypoint
// then this function returns true if we have flown past
// the target waypoint
bool Location::past_interval_finish_line(const Location &point1, const Location &point2) const
{
return this->line_path_proportion(point1, point2) >= 1.0f;
}
/*
return the proportion we are along the path from point1 to
point2, along a line parallel to point1<->point2.
This will be more than 1 if we have passed point2
*/
float Location::line_path_proportion(const Location &point1, const Location &point2) const
{
const Vector2f vec1 = point1.get_distance_NE(point2);
const Vector2f vec2 = point1.get_distance_NE(*this);
const float dsquared = sq(vec1.x) + sq(vec1.y);
if (dsquared < 0.001f) {
// the two points are very close together
return 1.0f;
}
return (vec1 * vec2) / dsquared;
}