Ardupilot2/libraries/AP_HAL_Linux/RCOutput_PCA9685.cpp

300 lines
8.2 KiB
C++

#include "RCOutput_PCA9685.h"
#include <cmath>
#include <dirent.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <utility>
#include <AP_HAL/AP_HAL.h>
#include "GPIO.h"
#define PCA9685_RA_MODE1 0x00
#define PCA9685_RA_MODE2 0x01
#define PCA9685_RA_LED0_ON_L 0x06
#define PCA9685_RA_LED0_ON_H 0x07
#define PCA9685_RA_LED0_OFF_L 0x08
#define PCA9685_RA_LED0_OFF_H 0x09
#define PCA9685_RA_ALL_LED_ON_L 0xFA
#define PCA9685_RA_ALL_LED_ON_H 0xFB
#define PCA9685_RA_ALL_LED_OFF_L 0xFC
#define PCA9685_RA_ALL_LED_OFF_H 0xFD
#define PCA9685_RA_PRE_SCALE 0xFE
#define PCA9685_MODE1_RESTART_BIT (1 << 7)
#define PCA9685_MODE1_EXTCLK_BIT (1 << 6)
#define PCA9685_MODE1_AI_BIT (1 << 5)
#define PCA9685_MODE1_SLEEP_BIT (1 << 4)
#define PCA9685_MODE1_SUB1_BIT (1 << 3)
#define PCA9685_MODE1_SUB2_BIT (1 << 2)
#define PCA9685_MODE1_SUB3_BIT (1 << 1)
#define PCA9685_MODE1_ALLCALL_BIT (1 << 0)
#define PCA9685_ALL_LED_OFF_H_SHUT (1 << 4)
#define PCA9685_MODE2_INVRT_BIT (1 << 4)
#define PCA9685_MODE2_OCH_BIT (1 << 3)
#define PCA9685_MODE2_OUTDRV_BIT (1 << 2)
#define PCA9685_MODE2_OUTNE1_BIT (1 << 1)
#define PCA9685_MODE2_OUTNE0_BIT (1 << 0)
#define PCA9685_LED_ON_H_ALWAYS_ON_BIT (1 << 4)
#define PCA9685_LED_OFF_H_ALWAYS_OFF_BIT (1 << 4)
/*
* Drift for internal oscillator
* see: https://github.com/ArduPilot/ardupilot/commit/50459bdca0b5a1adf95
* and https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library/issues/11
*/
#define PCA9685_INTERNAL_CLOCK (1.04f * 25000000.f)
using namespace Linux;
#define PWM_CHAN_COUNT 16
extern const AP_HAL::HAL& hal;
RCOutput_PCA9685::RCOutput_PCA9685(AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev,
uint32_t external_clock,
uint8_t channel_offset,
int16_t oe_pin_number) :
_enable_pin(nullptr),
_dev(std::move(dev)),
_frequency(50),
_pulses_buffer(NEW_NOTHROW uint16_t[PWM_CHAN_COUNT - channel_offset]),
_external_clock(external_clock),
_channel_offset(channel_offset),
_oe_pin_number(oe_pin_number)
{
if (_external_clock > 0) {
_osc_clock = _external_clock;
} else {
_osc_clock = PCA9685_INTERNAL_CLOCK;
}
}
RCOutput_PCA9685::~RCOutput_PCA9685()
{
delete [] _pulses_buffer;
}
void RCOutput_PCA9685::init()
{
reset_all_channels();
/* Set the initial frequency */
set_freq(0, 50);
/* Enable PCA9685 PWM */
if (_oe_pin_number != -1) {
_enable_pin = hal.gpio->channel(_oe_pin_number);
_enable_pin->mode(HAL_GPIO_OUTPUT);
_enable_pin->write(0);
}
}
void RCOutput_PCA9685::reset_all_channels()
{
if (!_dev || !_dev->get_semaphore()->take(10)) {
return;
}
uint8_t data[] = {PCA9685_RA_ALL_LED_ON_L, 0, 0, 0, 0};
_dev->transfer(data, sizeof(data), nullptr, 0);
/* Wait for the last pulse to end */
hal.scheduler->delay(2);
_dev->get_semaphore()->give();
}
void RCOutput_PCA9685::set_freq(uint32_t chmask, uint16_t freq_hz)
{
/* Correctly finish last pulses */
for (int i = 0; i < (PWM_CHAN_COUNT - _channel_offset); i++) {
write(i, _pulses_buffer[i]);
}
if (!_dev || !_dev->get_semaphore()->take(10)) {
return;
}
/* Shutdown before sleeping.
* see p.14 of PCA9685 product datasheet
*/
_dev->write_register(PCA9685_RA_ALL_LED_OFF_H, PCA9685_ALL_LED_OFF_H_SHUT);
/* Put PCA9685 to sleep (required to write prescaler) */
_dev->write_register(PCA9685_RA_MODE1, PCA9685_MODE1_SLEEP_BIT);
/* Calculate prescale and save frequency using this value: it may be
* different from @freq_hz due to rounding/ceiling. We use ceil() rather
* than round() so the resulting frequency is never greater than @freq_hz
*/
uint8_t prescale = ceilf(_osc_clock / (4096 * freq_hz)) - 1;
_frequency = _osc_clock / (4096 * (prescale + 1));
/* Write prescale value to match frequency */
_dev->write_register(PCA9685_RA_PRE_SCALE, prescale);
if (_external_clock) {
/* Enable external clocking */
_dev->write_register(PCA9685_RA_MODE1,
PCA9685_MODE1_SLEEP_BIT | PCA9685_MODE1_EXTCLK_BIT);
}
/* Restart the device to apply new settings and enable auto-incremented write */
_dev->write_register(PCA9685_RA_MODE1,
PCA9685_MODE1_RESTART_BIT | PCA9685_MODE1_AI_BIT);
_dev->get_semaphore()->give();
}
uint16_t RCOutput_PCA9685::get_freq(uint8_t ch)
{
return _frequency;
}
void RCOutput_PCA9685::enable_ch(uint8_t ch)
{
}
void RCOutput_PCA9685::disable_ch(uint8_t ch)
{
write(ch, 0);
}
bool RCOutput_PCA9685::force_safety_on() {
if (!_dev || !_dev->get_semaphore()->take(10)) {
return false;
}
/* Shutdown before sleeping. */
_dev->write_register(PCA9685_RA_ALL_LED_OFF_H, PCA9685_ALL_LED_OFF_H_SHUT);
_dev->get_semaphore()->give();
return true;
}
void RCOutput_PCA9685::force_safety_off() {
if (!_dev || !_dev->get_semaphore()->take(10)) {
return;
}
/* Restart the device and enable auto-incremented write */
_dev->write_register(PCA9685_RA_MODE1,
PCA9685_MODE1_RESTART_BIT | PCA9685_MODE1_AI_BIT);
_dev->get_semaphore()->give();
}
void RCOutput_PCA9685::write(uint8_t ch, uint16_t period_us)
{
if (ch >= (PWM_CHAN_COUNT - _channel_offset)) {
return;
}
if (_is_gpio_mask & (1U << ch)) {
return;
}
write_raw(ch, period_us);
}
void RCOutput_PCA9685::write_gpio(uint8_t chan, bool active)
{
if (chan >= (PWM_CHAN_COUNT - _channel_offset)) {
return;
}
_is_gpio_mask |= (1U << chan);
write_raw(chan, active);
}
void RCOutput_PCA9685::write_raw(uint8_t ch, uint16_t period_us) {
/* Common code used by both write() and write_gpio() */
_pulses_buffer[ch] = period_us;
_pending_write_mask |= (1U << ch);
if (!_corking) {
_corking = true;
push();
}
}
void RCOutput_PCA9685::cork()
{
_corking = true;
}
void RCOutput_PCA9685::push()
{
if (!_corking) {
return;
}
_corking = false;
if (_pending_write_mask == 0)
return;
// Calculate the number of channels for this transfer.
uint8_t max_ch = (sizeof(unsigned) * 8) - __builtin_clz(_pending_write_mask);
uint8_t min_ch = __builtin_ctz(_pending_write_mask);
/*
* scratch buffer size is always for all the channels, but we write only
* from min_ch to max_ch
*/
struct PACKED pwm_values {
uint8_t reg;
uint8_t data[PWM_CHAN_COUNT * 4];
} pwm_values;
for (unsigned ch = min_ch; ch < max_ch; ch++) {
uint16_t period_us = _pulses_buffer[ch];
uint16_t length = 0;
if (period_us) {
length = round((period_us * 4096) / (1000000.f / _frequency)) - 1;
}
uint8_t *d = &pwm_values.data[(ch - min_ch) * 4];
if (_is_gpio_mask & (1 << ch)) {
*d++ = 0; // LEDn_ON_L
*d++ = period_us ? PCA9685_LED_ON_H_ALWAYS_ON_BIT : 0; // LEDn_ON_H
*d++ = 0; // LEDn_OFF_L
*d++ = period_us ? 0 : PCA9685_LED_OFF_H_ALWAYS_OFF_BIT; // LEDn_OFF_H
} else {
*d++ = 0; // LEDn_ON_L
*d++ = 0; // LEDn_ON_H
*d++ = length & 0xFF; // LEDn_OFF_L
*d++ = length >> 8; // LEDn_OFF_H
}
}
if (!_dev || !_dev->get_semaphore()->take_nonblocking()) {
return;
}
pwm_values.reg = PCA9685_RA_LED0_ON_L + 4 * (_channel_offset + min_ch);
/* reg + all the channels we are going to write */
size_t payload_size = 1 + (max_ch - min_ch) * 4;
_dev->transfer((uint8_t *)&pwm_values, payload_size, nullptr, 0);
_dev->get_semaphore()->give();
_pending_write_mask = 0;
}
uint16_t RCOutput_PCA9685::read(uint8_t ch)
{
return _pulses_buffer[ch];
}
void RCOutput_PCA9685::read(uint16_t* period_us, uint8_t len)
{
for (int i = 0; i < len; i++) {
period_us[i] = read(0 + i);
}
}