Ardupilot2/libraries/APM_OBC/Failsafe_Board/Failsafe_Board.pde
Andrew Tridgell 97b7130bb9 libraries: update license header to GPLv3
we switched to GPLv3 a long time ago, but neglected to update the
per-file license headers
2013-08-30 13:01:39 +10:00

291 lines
7.4 KiB
Plaintext

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
OBC failsafe board
Jack Pittar and Andrew Tridgell
*/
#define MODE_PWM_PIN 9 //Command pulse read on input 11
#define MUXA_PIN 3 // H H rc , L H micro
#define MUXB_PIN 4 // H L backup, L L prime
#define LED_PIN 13
#define OBC_MODE_PIN 12 //high for OBC termination settings
#define AILERON_PIN 5
#define ELEVATOR_PIN 6
#define THROTTLE_PIN 7
#define RUDDER_PIN 8
#define HEARTBEAT_PRIMARY_PIN 11
#define TERMINATE_PRIMARY_PIN 10
#define HEARTBEAT_BACKUP_PIN A1
#define TERMINATE_BACKUP_PIN A0
// set to 1 if backup autopilot is installed
#define BACKUP_AUTOPILOT_INSTALLED 0
enum mux_mode {
MUX_MODE_RC = 1,
MUX_MODE_MICRO = 2,
MUX_MODE_BACKUP = 3,
MUX_MODE_PRIMARY = 4
};
// heartbeat status
static bool heartbeat_primary_ok = true;
static bool heartbeat_backup_ok = true;
// check heartbeat status
static void update_heartbeat(void)
{
static uint8_t last_hb_primary;
static uint8_t last_hb_backup;
static uint32_t last_primary_t;
static uint32_t last_backup_t;
uint8_t hb_primary = digitalRead(HEARTBEAT_PRIMARY_PIN);
uint8_t hb_backup = digitalRead(HEARTBEAT_BACKUP_PIN);
uint32_t tnow = millis();
// Serial.println(hb_primary);
// we consider the heartbeat to be OK if it changed in the
// last 0.4 seconds
const uint32_t hb_check_time = 400;
if (hb_primary != last_hb_primary) {
last_hb_primary = hb_primary;
last_primary_t = tnow;
//Serial.println("hb1 change");
}
if (hb_backup != last_hb_backup) {
last_hb_backup = hb_backup;
last_backup_t = tnow;
//Serial.println("hb2 change");
}
if (tnow < hb_check_time) {
// not enough time has passed for a measurement
return;
}
heartbeat_primary_ok = ((tnow - last_primary_t) < hb_check_time);
heartbeat_backup_ok = ((tnow - last_backup_t) < hb_check_time);
}
static void set_mux_mode(uint8_t mode)
{
switch ((enum mux_mode)mode) {
case MUX_MODE_RC:
digitalWrite(MUXA_PIN, HIGH);
digitalWrite(MUXB_PIN, HIGH);
break;
case MUX_MODE_MICRO:
digitalWrite(MUXA_PIN, LOW);
digitalWrite(MUXB_PIN, HIGH);
break;
case MUX_MODE_BACKUP:
digitalWrite(MUXA_PIN, HIGH);
digitalWrite(MUXB_PIN, LOW);
break;
case MUX_MODE_PRIMARY:
digitalWrite(MUXA_PIN, LOW);
digitalWrite(MUXB_PIN, LOW);
break;
}
}
// send pulses to servos
static void set_servos(uint16_t aileron, uint16_t elevator,
uint16_t throttle, uint16_t rudder)
{
digitalWrite(AILERON_PIN, HIGH);
delayMicroseconds(aileron);
digitalWrite(AILERON_PIN, LOW);
digitalWrite(ELEVATOR_PIN, HIGH);
delayMicroseconds(elevator);
digitalWrite(ELEVATOR_PIN, LOW);
digitalWrite(THROTTLE_PIN, HIGH);
delayMicroseconds(throttle);
digitalWrite(THROTTLE_PIN, LOW);
digitalWrite(RUDDER_PIN, HIGH);
delayMicroseconds(rudder);
digitalWrite(RUDDER_PIN, LOW);
}
static void set_servos_terminate(uint8_t obc_mode)
{
set_mux_mode(MUX_MODE_MICRO);
if (obc_mode) {
set_servos(1000, 2000, 1000, 1000);
} else {
set_servos(1500, 1500, 1200, 1500);
}
}
void setup()
{
// input pins
pinMode(HEARTBEAT_PRIMARY_PIN, INPUT);
pinMode(TERMINATE_PRIMARY_PIN, INPUT);
pinMode(HEARTBEAT_BACKUP_PIN, INPUT);
pinMode(TERMINATE_BACKUP_PIN, INPUT);
pinMode(MODE_PWM_PIN, INPUT);
pinMode(OBC_MODE_PIN, INPUT);
// output pins
pinMode(LED_PIN, OUTPUT);
pinMode(MUXA_PIN, OUTPUT);
pinMode(MUXB_PIN, OUTPUT);
pinMode(AILERON_PIN, OUTPUT);
pinMode(ELEVATOR_PIN, OUTPUT);
pinMode(THROTTLE_PIN, OUTPUT);
pinMode(RUDDER_PIN, OUTPUT);
digitalWrite(LED_PIN, LOW);
set_mux_mode(MUX_MODE_MICRO);
Serial.begin(115200);
Serial.println("OBC Failsafe Starting\n");
}
void loop()
{
static uint32_t last_status_t;
uint32_t tnow = millis();
static uint8_t led_state;
static bool has_terminated = false;
static uint8_t termination_counter;
static uint16_t loop_counter;
loop_counter++;
// check for heartbeat
update_heartbeat();
// see if we are in manual mode. Note that on the Uno,
// pulseIn is not very accurate. The +90 brings us much closer
// to the real pulse width
uint16_t mode_pwm = pulseIn(MODE_PWM_PIN, HIGH, 25000) + 90;
uint16_t manual_mode = (mode_pwm > 1750 && mode_pwm < 2100);
// check the state of the terminate pins
uint8_t terminate_primary = digitalRead(TERMINATE_PRIMARY_PIN);
uint8_t terminate_backup = digitalRead(TERMINATE_BACKUP_PIN);
// see if the OBC mode jumper is set
uint8_t obc_mode = digitalRead(OBC_MODE_PIN);
if (tnow - last_status_t > 1000) {
last_status_t = tnow;
// show status once a second
Serial.print("OBC:"); Serial.print(obc_mode);
Serial.print(" Mode:"); Serial.print(mode_pwm);
Serial.print(" HB1:"); Serial.print(heartbeat_primary_ok);
Serial.print(" HB2:"); Serial.print(heartbeat_backup_ok);
Serial.print(" TERM1:"); Serial.print(terminate_primary);
Serial.print(" TERM2:"); Serial.print(terminate_backup);
Serial.print(" TERMINATED:"); Serial.print(has_terminated);
Serial.print(" LOOP:"); Serial.print(loop_counter);
Serial.println();
delayMicroseconds(5000);
loop_counter = 0;
// flash LED once a second so we know failsafe board
// is working
led_state = !led_state;
digitalWrite(LED_PIN, led_state);
}
// allow reset via serial connection
if (Serial.available() > 0) {
char c = (char)Serial.read();
if (c == 'r') {
Serial.println("RESET BOARD");
has_terminated = false;
termination_counter = 0;
}
}
// if we are not in OBC mode, and the mode control
// channel is high, then give RC control
if (!obc_mode && manual_mode) {
// give manual control via RC
set_mux_mode(MUX_MODE_RC);
return;
}
#if BACKUP_AUTOPILOT_INSTALLED == 0
terminate_backup = false;
#endif
// see if termination is set by a functioning autopilot
if (heartbeat_primary_ok && terminate_primary) {
termination_counter++;
} else if (heartbeat_backup_ok && terminate_backup) {
termination_counter++;
} else if (obc_mode && !heartbeat_primary_ok && !heartbeat_backup_ok) {
// if in OBC mode and neither autopilot is OK, then
// terminate
termination_counter++;
} else {
termination_counter = 0;
}
// use the termination counter to debounce the termination
// pins
if (termination_counter > 10) {
termination_counter = 0;
has_terminated = true;
}
// if we have terminated then setup the servos
if (has_terminated) {
set_servos_terminate(obc_mode);
return;
}
bool heartbeat_ok = heartbeat_primary_ok;
#if BACKUP_AUTOPILOT_INSTALLED
if (heartbeat_backup_ok) {
heartbeat_ok = true;
}
#endif
if (heartbeat_ok) {
// at least one autopilot is healthy
if (manual_mode) {
// we want manual/RC control
set_mux_mode(MUX_MODE_RC);
} else if (heartbeat_primary_ok) {
set_mux_mode(MUX_MODE_PRIMARY);
} else {
set_mux_mode(MUX_MODE_BACKUP);
}
} else {
// neither autopilot is OK
if (obc_mode) {
set_servos_terminate(obc_mode);
} else {
// give RC control
set_mux_mode(MUX_MODE_RC);
}
}
}