Ardupilot2/libraries/SITL/SITL.cpp
Bob Long dee88b4ecb SITL: default SIM_ENGINE_MUL to 0
This makes SIM_ENGINE_FAIL work a little more intuitively, since it is
usually used to simulate a complete failure.

Also, drive-by fix of the SIM_ENGINE_MUL documentation.
2024-12-18 18:06:50 +11:00

1658 lines
59 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
SITL.cpp - software in the loop state
*/
#include "SITL.h"
#if AP_SIM_ENABLED
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Vehicle/AP_Vehicle_Type.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <AP_Logger/AP_Logger.h>
#include <AP_InertialSensor/AP_InertialSensor.h>
#ifdef SFML_JOYSTICK
#ifdef HAVE_SFML_GRAPHICS_HPP
#include <SFML/Window/Joystick.hpp>
#elif HAVE_SFML_GRAPHIC_H
#include <SFML/Window/Joystick.h>
#endif
#endif // SFML_JOYSTICK
#include "SIM_StratoBlimp.h"
#include "SIM_Glider.h"
#include "SIM_FlightAxis.h"
extern const AP_HAL::HAL& hal;
#ifndef SIM_RATE_HZ_DEFAULT
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#define SIM_RATE_HZ_DEFAULT 1200
#else
#define SIM_RATE_HZ_DEFAULT 400
#endif
#endif
#if (CONFIG_HAL_BOARD != HAL_BOARD_SITL)
// For on-hardware, set allowed relay channels to zero.
// Requires user to change the param to allow hadware access.
#define SIM_DEFAULT_ENABLED_RELAY_CHANNELS 0
#else
// For SITL, set allowed relay channels to the full mask.
#define SIM_DEFAULT_ENABLED_RELAY_CHANNELS UINT16_MAX
#endif
namespace SITL {
SIM *SIM::_singleton = nullptr;
// table of user settable parameters
const AP_Param::GroupInfo SIM::var_info[] = {
// @Param: DRIFT_SPEED
// @DisplayName: Gyro drift speed
// @Description: Gyro drift rate of change in degrees/second/minute
AP_GROUPINFO("DRIFT_SPEED", 5, SIM, drift_speed, 0.05f),
// @Param: DRIFT_TIME
// @DisplayName: Gyro drift time
// @Description: Gyro drift duration of one full drift cycle (period in minutes)
AP_GROUPINFO("DRIFT_TIME", 6, SIM, drift_time, 5),
// @Param: ENGINE_MUL
// @DisplayName: Engine failure thrust scaler
// @Description: Thrust from Motors in SIM_ENGINE_FAIL will be multiplied by this factor
// @Range: 0 1
AP_GROUPINFO("ENGINE_MUL", 8, SIM, engine_mul, 0),
// @Param: WIND_SPD
// @DisplayName: Simulated Wind speed
// @Description: Allows you to emulate wind in sim
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("WIND_SPD", 9, SIM, wind_speed, 0),
// @Param: WIND_DIR
// @DisplayName: Direction simulated wind is coming from
// @Description: Allows you to set wind direction (true deg) in sim
// @Units: deg
// @User: Advanced
AP_GROUPINFO("WIND_DIR", 10, SIM, wind_direction, 180),
// @Param: WIND_TURB
// @DisplayName: Simulated Wind variation
// @Description: Allows you to emulate random wind variations in sim
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("WIND_TURB", 11, SIM, wind_turbulance, 0),
// @Param: WIND_TC
// @DisplayName: Wind variation time constant
// @Description: this controls the time over which wind changes take effect
// @Units: s
// @User: Advanced
AP_GROUPINFO("WIND_TC", 12, SIM, wind_change_tc, 5),
// @Group: SERVO_
// @Path: ./ServoModel.cpp
AP_SUBGROUPINFO(servo, "SERVO_", 16, SIM, ServoParams),
// @Param: SONAR_ROT
// @DisplayName: Sonar rotation
// @Description: Sonar rotation from rotations enumeration
AP_GROUPINFO("SONAR_ROT", 17, SIM, sonar_rot, Rotation::ROTATION_PITCH_270),
// @Param: BATT_VOLTAGE
// @DisplayName: Simulated battery voltage
// @Description: Simulated battery (constant) voltage
// @Units: V
// @User: Advanced
AP_GROUPINFO("BATT_VOLTAGE", 19, SIM, batt_voltage, 12.6f),
// @Param: BATT_CAP_AH
// @DisplayName: Simulated battery capacity
// @Description: Simulated battery capacity
// @Units: Ah
// @User: Advanced
AP_GROUPINFO("BATT_CAP_AH", 20, SIM, batt_capacity_ah, 0),
// @Param: SONAR_GLITCH
// @DisplayName: Sonar glitch probablility
// @Description: Probablility a sonar glitch would happen
// @Range: 0 1
// @User: Advanced
AP_GROUPINFO("SONAR_GLITCH", 23, SIM, sonar_glitch, 0),
// @Param: SONAR_RND
// @DisplayName: Sonar noise factor
// @Description: Scaling factor for simulated sonar noise
// @User: Advanced
AP_GROUPINFO("SONAR_RND", 24, SIM, sonar_noise, 0),
// @Param: RC_FAIL
// @DisplayName: Simulated RC signal failure
// @Description: Allows you to emulate rc failures in sim
// @Values: 0:Disabled,1:No RC pusles,2:All Channels neutral except Throttle is 950us
// @User: Advanced
AP_GROUPINFO("RC_FAIL", 25, SIM, rc_fail, 0),
// @Param: FLOAT_EXCEPT
// @DisplayName: Generate floating point exceptions
// @Description: If set, if a numerical error occurs SITL will die with a floating point exception.
// @User: Advanced
AP_GROUPINFO("FLOAT_EXCEPT", 28, SIM, float_exception, 1),
// @Param: CAN_SRV_MSK
// @DisplayName: Mask of CAN servos/ESCs
// @Description: The set of actuators controlled externally by CAN SITL AP_Periph
// @Bitmask: 0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15, 15: Servo 16, 16: Servo 17, 17: Servo 18, 18: Servo 19, 19: Servo 20, 20: Servo 21, 21: Servo 22, 22: Servo 23, 23: Servo 24, 24: Servo 25, 25: Servo 26, 26: Servo 27, 27: Servo 28, 28: Servo 29, 29: Servo 30, 30: Servo 31, 31: Servo 32
// @User: Advanced
AP_GROUPINFO("CAN_SRV_MSK", 29, SIM, can_servo_mask, 0),
#if HAL_NUM_CAN_IFACES > 0
// @Param: CAN_TYPE1
// @DisplayName: transport type for first CAN interface
// @Description: transport type for first CAN interface
// @Values: 0:None,1:MulticastUDP,2:SocketCAN
// @User: Advanced
AP_GROUPINFO("CAN_TYPE1", 30, SIM, can_transport[0], uint8_t(CANTransport::MulticastUDP)),
#endif
#if HAL_NUM_CAN_IFACES > 1
// @Param: CAN_TYPE2
// @DisplayName: transport type for second CAN interface
// @Description: transport type for second CAN interface
// @Values: 0:None,1:MulticastUDP,2:SocketCAN
// @User: Advanced
AP_GROUPINFO("CAN_TYPE2", 31, SIM, can_transport[1], uint8_t(CANTransport::MulticastUDP)),
#endif
// @Param: SONAR_SCALE
// @DisplayName: Sonar conversion scale
// @Description: Sonar conversion scale from distance to voltage
// @Units: m/V
AP_GROUPINFO("SONAR_SCALE", 32, SIM, sonar_scale, 12.1212f),
// @Param: FLOW_ENABLE
// @DisplayName: Opflow Enable
// @Description: Enable simulated Optical Flow sensor
// @Values: 0:Disable,1:Enabled
AP_GROUPINFO("FLOW_ENABLE", 33, SIM, flow_enable, 0),
// @Param: TERRAIN
// @DisplayName: Terrain Enable
// @Description: Enable using terrain for height
// @Values: 0:Disable,1:Enabled
AP_GROUPINFO("TERRAIN", 34, SIM, terrain_enable, 1),
// @Param: FLOW_RATE
// @DisplayName: Opflow Rate
// @Description: Opflow Data Rate
// @Units: Hz
AP_GROUPINFO("FLOW_RATE", 35, SIM, flow_rate, 10),
// @Param: FLOW_DELAY
// @DisplayName: Opflow Delay
// @Description: Opflow data delay
// @Units: ms
AP_GROUPINFO("FLOW_DELAY", 36, SIM, flow_delay, 0),
// @Param: ADSB_COUNT
// @DisplayName: Number of ADSB aircrafts
// @Description: Total number of ADSB simulated aircraft
AP_GROUPINFO("ADSB_COUNT", 45, SIM, adsb_plane_count, -1),
// @Param: ADSB_RADIUS
// @DisplayName: ADSB radius stddev of another aircraft
// @Description: Simulated standard deviation of radius in ADSB of another aircraft
// @Units: m
AP_GROUPINFO("ADSB_RADIUS", 46, SIM, adsb_radius_m, 10000),
// @Param: ADSB_ALT
// @DisplayName: ADSB altitude of another aircraft
// @Description: Simulated ADSB altitude of another aircraft
// @Units: m
AP_GROUPINFO("ADSB_ALT", 47, SIM, adsb_altitude_m, 1000),
// @Param: PIN_MASK
// @DisplayName: GPIO emulation
// @Description: SITL GPIO emulation
AP_GROUPINFO("PIN_MASK", 50, SIM, pin_mask, 0),
// @Param: ADSB_TX
// @DisplayName: ADSB transmit enable
// @Description: ADSB transceiever enable and disable
// @Values: 0:Transceiever disable, 1:Transceiever enable
AP_GROUPINFO("ADSB_TX", 51, SIM, adsb_tx, 0),
// @Param: SPEEDUP
// @DisplayName: Sim Speedup
// @Description: Runs the simulation at multiples of normal speed. Do not use if realtime physics, like RealFlight, is being used
// @Range: 1 10
// @User: Advanced
AP_GROUPINFO("SPEEDUP", 52, SIM, speedup, -1),
// @Param: IMU_POS
// @DisplayName: IMU Offsets
// @Description: XYZ position of the IMU accelerometer relative to the body frame origin
// @Units: m
// @Vector3Parameter: 1
AP_GROUPINFO("IMU_POS", 53, SIM, imu_pos_offset, 0),
AP_SUBGROUPEXTENSION("", 54, SIM, var_ins),
AP_GROUPINFO("SONAR_POS", 55, SIM, rngfnd_pos_offset, 0),
// @Param: FLOW_POS
// @DisplayName: Opflow Pos
// @Description: XYZ position of the optical flow sensor focal point relative to the body frame origin
// @Units: m
// @Vector3Parameter: 1
AP_GROUPINFO("FLOW_POS", 56, SIM, optflow_pos_offset, 0),
// @Param: ENGINE_FAIL
// @DisplayName: Engine Fail Mask
// @Description: mask of motors which SIM_ENGINE_MUL will be applied to
// @Bitmask: 0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15, 15: Servo 16, 16: Servo 17, 17: Servo 18, 18: Servo 19, 19: Servo 20, 20: Servo 21, 21: Servo 22, 22: Servo 23, 23: Servo 24, 24: Servo 25, 25: Servo 26, 26: Servo 27, 27: Servo 28, 28: Servo 29, 29: Servo 30, 30: Servo 31, 31: Servo 32
AP_GROUPINFO("ENGINE_FAIL", 58, SIM, engine_fail, 0),
AP_SUBGROUPINFO(models, "", 59, SIM, SIM::ModelParm),
AP_SUBGROUPEXTENSION("", 60, SIM, var_mag),
#if HAL_SIM_GPS_ENABLED
AP_SUBGROUPEXTENSION("", 61, SIM, var_gps),
#endif
AP_SUBGROUPEXTENSION("", 62, SIM, var_info3),
AP_SUBGROUPEXTENSION("", 63, SIM, var_info2),
AP_GROUPEND
};
// second table of user settable parameters for SITL.
const AP_Param::GroupInfo SIM::var_info2[] = {
// @Param: TEMP_START
// @DisplayName: Start temperature
// @Description: Baro start temperature
// @Units: degC
// @User: Advanced
AP_GROUPINFO("TEMP_START", 1, SIM, temp_start, 25),
// @Param: TEMP_BRD_OFF
// @DisplayName: Baro temperature offset
// @Description: Barometer board temperature offset from atmospheric temperature
// @Units: degC
// @User: Advanced
AP_GROUPINFO("TEMP_BRD_OFF", 2, SIM, temp_board_offset, 20),
// @Param: TEMP_TCONST
// @DisplayName: Warmup time constant
// @Description: Barometer warmup temperature time constant
// @Units: degC
// @User: Advanced
AP_GROUPINFO("TEMP_TCONST", 3, SIM, temp_tconst, 30),
// @Param: TEMP_BFACTOR
// @DisplayName: Baro temperature factor
// @Description: A pressure change with temperature that closely matches what has been observed with a ICM-20789
// @User: Advanced
AP_GROUPINFO("TEMP_BFACTOR", 4, SIM, temp_baro_factor, 0),
// @Param: WIND_DIR_Z
// @DisplayName: Simulated wind vertical direction
// @Description: Allows you to set vertical wind direction (true deg) in sim. 0 means pure horizontal wind. 90 means pure updraft.
// @Units: deg
// @User: Advanced
AP_GROUPINFO("WIND_DIR_Z", 10, SIM, wind_dir_z, 0),
// @Param: WIND_T
// @DisplayName: Wind Profile Type
// @Description: Selects how wind varies from surface to WIND_T_ALT
// @Values: 0:square law,1: none, 2:linear-see WIND_T_COEF
// @User: Advanced
AP_GROUPINFO("WIND_T" ,15, SIM, wind_type, SIM::WIND_TYPE_SQRT),
// @Param: WIND_T_ALT
// @DisplayName: Full Wind Altitude
// @Description: Altitude at which wind reaches full strength, decaying from full strength as altitude lowers to ground level
// @Units: m
// @User: Advanced
AP_GROUPINFO("WIND_T_ALT" ,16, SIM, wind_type_alt, 60),
// @Param: WIND_T_COEF
// @DisplayName: Linear Wind Curve Coeff
// @Description: For linear wind profile,wind is reduced by (Altitude-WIND_T_ALT) x this value
// @User: Advanced
AP_GROUPINFO("WIND_T_COEF", 17, SIM, wind_type_coef, 0.01f),
// @Param: RC_CHANCOUNT
// @DisplayName: RC channel count
// @Description: SITL RC channel count
AP_GROUPINFO("RC_CHANCOUNT",21, SIM, rc_chancount, 16),
// @Group: SPR_
// @Path: ./SIM_Sprayer.cpp
AP_SUBGROUPINFO(sprayer_sim, "SPR_", 22, SIM, Sprayer),
// @Group: GRPS_
// @Path: ./SIM_Gripper_Servo.cpp
AP_SUBGROUPINFO(gripper_sim, "GRPS_", 23, SIM, Gripper_Servo),
// @Group: GRPE_
// @Path: ./SIM_Gripper_EPM.cpp
AP_SUBGROUPINFO(gripper_epm_sim, "GRPE_", 24, SIM, Gripper_EPM),
// @Param: WOW_PIN
// @DisplayName: Weight on Wheels Pin
// @Description: SITL set this simulated pin to true if vehicle is on ground
// @User: Advanced
AP_GROUPINFO("WOW_PIN", 25, SIM, wow_pin, -1),
// vibration frequencies on each axis
AP_GROUPINFO("VIB_FREQ", 26, SIM, vibe_freq, 0),
// @Path: ./SIM_Parachute.cpp
AP_SUBGROUPINFO(parachute_sim, "PARA_", 27, SIM, Parachute),
// @Param: BAUDLIMIT_EN
// @DisplayName: Telemetry bandwidth limitting
// @Description: SITL enable bandwidth limitting on telemetry ports with non-zero values
AP_GROUPINFO("BAUDLIMIT_EN", 28, SIM, telem_baudlimit_enable, 0),
// @Group: PLD_
// @Path: ./SIM_Precland.cpp
AP_SUBGROUPINFO(precland_sim, "PLD_", 29, SIM, SIM_Precland),
// @Param: SHOVE_X
// @DisplayName: Acceleration of shove x
// @Description: Acceleration of shove to vehicle in x axis
// @Units: m/s/s
AP_GROUPINFO("SHOVE_X", 30, SIM, shove.x, 0),
// @Param: SHOVE_Y
// @DisplayName: Acceleration of shove y
// @Description: Acceleration of shove to vehicle in y axis
// @Units: m/s/s
AP_GROUPINFO("SHOVE_Y", 31, SIM, shove.y, 0),
// @Param: SHOVE_Z
// @DisplayName: Acceleration of shove z
// @Description: Acceleration of shove to vehicle in z axis
// @Units: m/s/s
AP_GROUPINFO("SHOVE_Z", 32, SIM, shove.z, 0),
// @Param: SHOVE_TIME
// @DisplayName: Time length for shove
// @Description: Force to the vehicle over a period of time
// @Units: ms
AP_GROUPINFO("SHOVE_TIME", 33, SIM, shove.t, 0),
// @Param: FLOW_RND
// @DisplayName: Opflow noise
// @Description: Optical Flow sensor measurement noise
// @Units: rad/s
AP_GROUPINFO("FLOW_RND", 34, SIM, flow_noise, 0.05f),
// @Param: TWIST_X
// @DisplayName: Twist x
// @Description: Rotational acceleration of twist x axis
// @Units: rad/s/s
AP_GROUPINFO("TWIST_X", 37, SIM, twist.x, 0),
// @Param: TWIST_Y
// @DisplayName: Twist y
// @Description: Rotational acceleration of twist y axis
// @Units: rad/s/s
AP_GROUPINFO("TWIST_Y", 38, SIM, twist.y, 0),
// @Param: TWIST_Z
// @DisplayName: Twist z
// @Description: Rotational acceleration of twist z axis
// @Units: rad/s/s
AP_GROUPINFO("TWIST_Z", 39, SIM, twist.z, 0),
// @Param: TWIST_TIME
// @DisplayName: Twist time
// @Description: Time that twist is applied on the vehicle
// @Units: ms
AP_GROUPINFO("TWIST_TIME", 40, SIM, twist.t, 0),
// @Param: GND_BEHAV
// @DisplayName: Ground behavior
// @Description: Ground behavior of aircraft (tailsitter, no movement, forward only)
AP_GROUPINFO("GND_BEHAV", 41, SIM, gnd_behav, -1),
// sailboat wave and tide simulation parameters
// @Param: WAVE_ENABLE
// @DisplayName: Wave enable
// @Description: Wave enable and modes
// @Values: 0:disabled, 1: roll and pitch, 2: roll and pitch and heave
AP_GROUPINFO("WAVE_ENABLE", 44, SIM, wave.enable, 0.0f),
// @Param: WAVE_LENGTH
// @DisplayName: Wave length
// @Description: Wave length in SITL
// @Units: m
AP_GROUPINFO("WAVE_LENGTH", 45, SIM, wave.length, 10.0f),
// @Param: WAVE_AMP
// @DisplayName: Wave amplitude
// @Description: Wave amplitude in SITL
// @Units: m
AP_GROUPINFO("WAVE_AMP", 46, SIM, wave.amp, 0.5f),
// @Param: WAVE_DIR
// @DisplayName: Wave direction
// @Description: Direction wave is coming from
// @Units: deg
AP_GROUPINFO("WAVE_DIR", 47, SIM, wave.direction, 0.0f),
// @Param: WAVE_SPEED
// @DisplayName: Wave speed
// @Description: Wave speed in SITL
// @Units: m/s
AP_GROUPINFO("WAVE_SPEED", 48, SIM, wave.speed, 0.5f),
// @Param: TIDE_DIR
// @DisplayName: Tide direction
// @Description: Tide direction wave is coming from
// @Units: deg
AP_GROUPINFO("TIDE_DIR", 49, SIM, tide.direction, 0.0f),
// @Param: TIDE_SPEED
// @DisplayName: Tide speed
// @Description: Tide speed in simulation
// @Units: m/s
AP_GROUPINFO("TIDE_SPEED", 50, SIM, tide.speed, 0.0f),
// the following coordinates are for CMAC, in Canberra
// @Param: OPOS_LAT
// @DisplayName: Original Position (Latitude)
// @Description: Specifies vehicle's startup latitude
// @User: Advanced
AP_GROUPINFO("OPOS_LAT", 51, SIM, opos.lat, -35.363261f),
// @Param: OPOS_LNG
// @DisplayName: Original Position (Longitude)
// @Description: Specifies vehicle's startup longitude
// @User: Advanced
AP_GROUPINFO("OPOS_LNG", 52, SIM, opos.lng, 149.165230f),
// @Param: OPOS_ALT
// @DisplayName: Original Position (Altitude)
// @Description: Specifies vehicle's startup altitude (AMSL)
// @User: Advanced
AP_GROUPINFO("OPOS_ALT", 53, SIM, opos.alt, 584.0f),
// @Param: OPOS_HDG
// @DisplayName: Original Position (Heading)
// @Description: Specifies vehicle's startup heading (0-360)
// @User: Advanced
AP_GROUPINFO("OPOS_HDG", 54, SIM, opos.hdg, 353.0f),
// @Param: LOOP_DELAY
// @DisplayName: Extra delay per main loop
// @Description: Extra time delay per main loop
// @Units: us
AP_GROUPINFO("LOOP_DELAY", 55, SIM, loop_delay, 0),
// @Path: ./SIM_Buzzer.cpp
AP_SUBGROUPINFO(buzzer_sim, "BZ_", 56, SIM, Buzzer),
// @Path: ./SIM_ToneAlarm.cpp
AP_SUBGROUPINFO(tonealarm_sim, "TA_", 57, SIM, ToneAlarm),
// @Param: EFI_TYPE
// @DisplayName: Type of Electronic Fuel Injection
// @Description: Different types of Electronic Fuel Injection (EFI) systems
// @Values: 0:None,1:MegaSquirt EFI system, 2:Löweheiser EFI system, 8:Hirth engines
AP_GROUPINFO("EFI_TYPE", 58, SIM, efi_type, SIM::EFI_TYPE_NONE),
// 59 was SAFETY_STATE
// @Param: VIB_MOT_HMNC
// @DisplayName: Motor harmonics
// @Description: Motor harmonics generated in SITL
AP_GROUPINFO("VIB_MOT_HMNC", 60, SIM, vibe_motor_harmonics, 1),
// @Param: VIB_MOT_MASK
// @DisplayName: Motor mask
// @Description: Motor mask, allowing external simulators to mark motors
AP_GROUPINFO("VIB_MOT_MASK", 5, SIM, vibe_motor_mask, 0),
// @Param: VIB_MOT_MAX
// @DisplayName: Max motor vibration frequency
// @Description: Max frequency to use as baseline for adding motor noise for the gyros and accels
// @Units: Hz
AP_GROUPINFO("VIB_MOT_MAX", 61, SIM, vibe_motor, 0.0f),
// @Param: INS_THR_MIN
// @DisplayName: Minimum throttle INS noise
// @Description: Minimum throttle for simulated ins noise
AP_GROUPINFO("INS_THR_MIN", 62, SIM, ins_noise_throttle_min, 0.1f),
// @Param: VIB_MOT_MULT
// @DisplayName: Vibration motor scale
// @Description: Amplitude scaling of motor noise relative to gyro/accel noise
AP_GROUPINFO("VIB_MOT_MULT", 63, SIM, vibe_motor_scale, 1.0f),
AP_GROUPEND
};
// third table of user settable parameters for SITL.
const AP_Param::GroupInfo SIM::var_info3[] = {
// @Param: ODOM_ENABLE
// @DisplayName: Odometry enable
// @Description: SITL odometry enabl
// @Values: 0:Disable, 1:Enable
AP_GROUPINFO("ODOM_ENABLE", 1, SIM, odom_enable, 0),
// @Param: LED_LAYOUT
// @DisplayName: LED layout
// @Description: LED layout config value
AP_GROUPINFO("LED_LAYOUT", 11, SIM, led_layout, 0),
// @Param: THML_SCENARI
// @DisplayName: Thermal scenarios
// @Description: Scenario for thermalling simulation, for soaring
AP_GROUPINFO("THML_SCENARI", 12, SIM, thermal_scenario, 0),
// @Param: VICON_POS_X
// @DisplayName: SITL vicon position on vehicle in Forward direction
// @Description: SITL vicon position on vehicle in Forward direction
// @Units: m
// @Range: 0 10
// @User: Advanced
// @Param: VICON_POS_Y
// @DisplayName: SITL vicon position on vehicle in Right direction
// @Description: SITL vicon position on vehicle in Right direction
// @Units: m
// @Range: 0 10
// @User: Advanced
// @Param: VICON_POS_Z
// @DisplayName: SITL vicon position on vehicle in Down direction
// @Description: SITL vicon position on vehicle in Down direction
// @Units: m
// @Range: 0 10
// @User: Advanced
AP_GROUPINFO("VICON_POS", 14, SIM, vicon_pos_offset, 0),
// Buyoancy for submarines
AP_GROUPINFO_FRAME("BUOYANCY", 15, SIM, buoyancy, 1, AP_PARAM_FRAME_SUB),
// @Param: VICON_GLIT_X
// @DisplayName: SITL vicon position glitch North
// @Description: SITL vicon position glitch North
// @Units: m
// @User: Advanced
// @Param: VICON_GLIT_Y
// @DisplayName: SITL vicon position glitch East
// @Description: SITL vicon position glitch East
// @Units: m
// @User: Advanced
// @Param: VICON_GLIT_Z
// @DisplayName: SITL vicon position glitch Down
// @Description: SITL vicon position glitch Down
// @Units: m
// @User: Advanced
AP_GROUPINFO("VICON_GLIT", 16, SIM, vicon_glitch, 0),
// @Param: VICON_FAIL
// @DisplayName: SITL vicon failure
// @Description: SITL vicon failure
// @Values: 0:Vicon Healthy, 1:Vicon Failed
// @User: Advanced
AP_GROUPINFO("VICON_FAIL", 17, SIM, vicon_fail, 0),
// @Param: VICON_YAW
// @DisplayName: SITL vicon yaw angle in earth frame
// @Description: SITL vicon yaw angle in earth frame
// @Units: deg
// @Range: 0 360
// @User: Advanced
AP_GROUPINFO("VICON_YAW", 18, SIM, vicon_yaw, 0),
// @Param: VICON_YAWERR
// @DisplayName: SITL vicon yaw error
// @Description: SITL vicon yaw added to reported yaw sent to vehicle
// @Units: deg
// @Range: -180 180
// @User: Advanced
AP_GROUPINFO("VICON_YAWERR", 19, SIM, vicon_yaw_error, 0),
// @Param: VICON_TMASK
// @DisplayName: SITL vicon type mask
// @Description: SITL vicon messages sent
// @Bitmask: 0:VISION_POSITION_ESTIMATE, 1:VISION_SPEED_ESTIMATE, 2:VICON_POSITION_ESTIMATE, 3:VISION_POSITION_DELTA, 4:ODOMETRY
// @User: Advanced
AP_GROUPINFO("VICON_TMASK", 20, SIM, vicon_type_mask, 3),
// @Param: VICON_VGLI_X
// @DisplayName: SITL vicon velocity glitch North
// @Description: SITL vicon velocity glitch North
// @Units: m/s
// @User: Advanced
// @Param: VICON_VGLI_Y
// @DisplayName: SITL vicon velocity glitch East
// @Description: SITL vicon velocity glitch East
// @Units: m/s
// @User: Advanced
// @Param: VICON_VGLI_Z
// @DisplayName: SITL vicon velocity glitch Down
// @Description: SITL vicon velocity glitch Down
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("VICON_VGLI", 21, SIM, vicon_vel_glitch, 0),
// @Param: RATE_HZ
// @DisplayName: Loop rate
// @Description: SITL Loop rate
// @Units: Hz
AP_GROUPINFO("RATE_HZ", 22, SIM, loop_rate_hz, SIM_RATE_HZ_DEFAULT),
// @Param: IMU_COUNT
// @DisplayName: IMU count
// @Description: Number of simulated IMUs to create
AP_GROUPINFO("IMU_COUNT", 23, SIM, imu_count, 2),
// @Path: ./SIM_FETtecOneWireESC.cpp
AP_SUBGROUPINFO(fetteconewireesc_sim, "FTOWESC_", 30, SIM, FETtecOneWireESC),
// @Path: ./SIM_RichenPower.cpp
AP_SUBGROUPINFO(richenpower_sim, "RICH_", 31, SIM, RichenPower),
// @Path: ./SIM_IntelligentEnergy24.cpp
AP_SUBGROUPINFO(ie24_sim, "IE24_", 32, SIM, IntelligentEnergy24),
// user settable barometer parameters
// @Param: BARO_COUNT
// @DisplayName: Baro count
// @Description: Number of simulated baros to create in SITL
// @Range: 0 3
AP_GROUPINFO("BARO_COUNT", 33, SIM, baro_count, 2),
// @Group: BARO_
// @Path: ./SITL_Baro.cpp
AP_SUBGROUPINFO(baro[0], "BARO_", 34, SIM, BaroParm),
#if BARO_MAX_INSTANCES > 1
// @Group: BAR2_
// @Path: ./SITL_Baro.cpp
AP_SUBGROUPINFO(baro[1], "BAR2_", 35, SIM, BaroParm),
#endif
#if BARO_MAX_INSTANCES > 2
// @Group: BAR3_
// @Path: ./SITL_Baro.cpp
AP_SUBGROUPINFO(baro[2], "BAR3_", 36, SIM, BaroParm),
#endif
// @Param: TIME_JITTER
// @DisplayName: Loop time jitter
// @Description: Upper limit of random jitter in loop time
// @Units: us
// @User: Advanced
AP_GROUPINFO("TIME_JITTER", 37, SIM, loop_time_jitter_us, 0),
// @Param: ESC_TELEM
// @DisplayName: Simulated ESC Telemetry
// @Description: enable perfect simulated ESC telemetry
// @User: Advanced
AP_GROUPINFO("ESC_TELEM", 40, SIM, esc_telem, 1),
// @Param: ESC_ARM_RPM
// @DisplayName: ESC RPM when armed
// @Description: Simulated RPM when motors are armed
// @User: Advanced
AP_GROUPINFO("ESC_ARM_RPM", 41, SIM, esc_rpm_armed, 0.0f),
// @Param: UART_LOSS
// @DisplayName: UART byte loss percentage
// @Description: Sets percentage of outgoing byte loss on UARTs
// @Units: %
// @User: Advanced
AP_GROUPINFO("UART_LOSS", 42, SIM, uart_byte_loss_pct, 0),
// @Group: ARSPD_
// @Path: ./SITL_Airspeed.cpp
AP_SUBGROUPINFO(airspeed[0], "ARSPD_", 50, SIM, AirspeedParm),
#if AIRSPEED_MAX_SENSORS > 1
// @Group: ARSPD2_
// @Path: ./SITL_Airspeed.cpp
AP_SUBGROUPINFO(airspeed[1], "ARSPD2_", 51, SIM, AirspeedParm),
#endif
// @Param: ADSB_TYPES
// @DisplayName: Simulated ADSB Type mask
// @Description: specifies which simulated ADSB types are active
// @User: Advanced
// @Bitmask: 0:MAVLink,3:SageTechMXS
AP_GROUPINFO("ADSB_TYPES", 52, SIM, adsb_types, 1),
#ifdef WITH_SITL_OSD
// @Param: OSD_COLUMNS
// @DisplayName: Simulated OSD number of text columns
// @Description: Simulated OSD number of text columns
// @Range: 10 100
AP_GROUPINFO("OSD_COLUMNS", 53, SIM, osd_columns, 30),
// @Param: OSD_ROWS
// @DisplayName: Simulated OSD number of text rows
// @Description: Simulated OSD number of text rows
// @Range: 10 100
AP_GROUPINFO("OSD_ROWS", 54, SIM, osd_rows, 16),
#endif
#ifdef SFML_JOYSTICK
AP_SUBGROUPEXTENSION("", 63, SIM, var_sfml_joystick),
#endif // SFML_JOYSTICK
AP_GROUPEND
};
#if HAL_SIM_GPS_ENABLED
// GPS SITL parameters
const AP_Param::GroupInfo SIM::var_gps[] = {
// 1 was GPS_DISABLE
// 2 was GPS_LAG_MS
// 3 was GPS_TYPE
// 4 was GPS_BYTELOSS
// 5 was GPS_NUMSATS
// 6 was GPS_GLITCH
// 7 was GPS_HZ
// 8 was GPS_DRIFTALT
// 9 was GPS_POS
// 10 was GPS_NOISE
// 11 was GPS_LOCKTIME
// 12 was GPS_ALT_OFS
// 13 was GPS_HDG
// 14 was GPS_ACC
// 15 was GPS_VERR
// 16 was GPS_JAM
// 30 was GPS2_DISABLE
// 31 was GPS2_LAG_MS
// 32 was GPS2_TYPE
// 33 was GPS2_BYTELOSS
// 34 was GPS2_NUMSATS
// 35 was GPS2_GLITCH
// 36 was GPS2_HZ
// 37 was GPS2_DRIFTALT
// 38 was GPS2_POS
// 39 was GPS2_NOISE
// 40 was GPS2_LOCKTIME
// 41 was GPS2_ALT_OFS
// 42 was GPS2_HDG
// 43 was GPS2_ACC
// 44 was GPS2_VERR
// @Param: INIT_LAT_OFS
// @DisplayName: Initial Latitude Offset
// @Description: GPS initial lat offset from origin
AP_GROUPINFO("INIT_LAT_OFS", 45, SIM, gps_init_lat_ofs, 0),
// @Param: INIT_LON_OFS
// @DisplayName: Initial Longitude Offset
// @Description: GPS initial lon offset from origin
AP_GROUPINFO("INIT_LON_OFS", 46, SIM, gps_init_lon_ofs, 0),
// @Param: INIT_ALT_OFS
// @DisplayName: Initial Altitude Offset
// @Description: GPS initial alt offset from origin
AP_GROUPINFO("INIT_ALT_OFS", 47, SIM, gps_init_alt_ofs, 0),
// @Param: GPS_LOG_NUM
// @DisplayName: GPS Log Number
// @Description: Log number for GPS:update_file()
AP_GROUPINFO("GPS_LOG_NUM", 48, SIM, gps_log_num, 0),
// 49 was GPS2_JAM
#if AP_SIM_MAX_GPS_SENSORS > 0
// @Group: GPS1_
// @Path: ./SIM_GPS.cpp
AP_SUBGROUPINFO(gps[0], "GPS1_", 50, SIM, GPSParms),
#endif
#if AP_SIM_MAX_GPS_SENSORS > 1
// @Group: GPS2_
// @Path: ./SIM_GPS.cpp
AP_SUBGROUPINFO(gps[1], "GPS2_", 51, SIM, GPSParms),
#endif
#if AP_SIM_MAX_GPS_SENSORS > 2
// @Group: GPS3_
// @Path: ./SIM_GPS.cpp
AP_SUBGROUPINFO(gps[2], "GPS3_", 52, SIM, GPSParms),
#endif
#if AP_SIM_MAX_GPS_SENSORS > 3
// @Group: GPS4_
// @Path: ./SIM_GPS.cpp
AP_SUBGROUPINFO(gps[3], "GPS4_", 53, SIM, GPSParms),
#endif
AP_GROUPEND
};
#endif // HAL_SIM_GPS_ENABLED
// Mag SITL parameters
const AP_Param::GroupInfo SIM::var_mag[] = {
// @Param: MAG_RND
// @DisplayName: Mag motor noise factor
// @Description: Scaling factor for simulated vibration from motors
// @User: Advanced
AP_GROUPINFO("MAG_RND", 1, SIM, mag_noise, 0),
AP_GROUPINFO("MAG_MOT", 2, SIM, mag_mot, 0),
// @Param: MAG_DELAY
// @DisplayName: Mag measurement delay
// @Description: Magnetometer measurement delay
// @Units: ms
// @User: Advanced
AP_GROUPINFO("MAG_DELAY", 3, SIM, mag_delay, 0),
AP_GROUPINFO("MAG1_OFS", 4, SIM, mag_ofs[0], 0),
AP_GROUPINFO("MAG_ALY", 5, SIM, mag_anomaly_ned, 0),
// @Param: MAG_ALY_HGT
// @DisplayName: Magnetic anomaly height
// @Description: Height above ground where anomally strength has decayed to 1/8 of the ground level value
// @Units: m
// @User: Advanced
AP_GROUPINFO("MAG_ALY_HGT", 6, SIM, mag_anomaly_hgt, 1.0f),
AP_GROUPINFO("MAG1_DIA", 7, SIM, mag_diag[0], 0),
AP_GROUPINFO("MAG1_ODI", 8, SIM, mag_offdiag[0], 0),
// @Param: MAG1_ORIENT
// @DisplayName: MAG1 Orientation
// @Description: MAG1 external compass orientation
// @User: Advanced
AP_GROUPINFO("MAG1_ORIENT", 9, SIM, mag_orient[0], 0),
// @Param: MAG1_SCALING
// @DisplayName: MAG1 Scaling factor
// @Description: Scale the compass 1 to simulate sensor scale factor errors
// @User: Advanced
AP_GROUPINFO("MAG1_SCALING", 10, SIM, mag_scaling[0], 1),
// @Param: MAG1_DEVID
// @DisplayName: MAG1 Device ID
// @Description: Device ID of simulated compass 1
// @User: Advanced
AP_GROUPINFO("MAG1_DEVID", 11, SIM, mag_devid[0], 97539),
// @Param: MAG2_DEVID
// @DisplayName: MAG2 Device ID
// @Description: Device ID of simulated compass 2
// @User: Advanced
AP_GROUPINFO("MAG2_DEVID", 12, SIM, mag_devid[1], 131874),
#if MAX_CONNECTED_MAGS > 2
// @Param: MAG3_DEVID
// @DisplayName: MAG3 Device ID
// @Description: Device ID of simulated compass 3
// @User: Advanced
AP_GROUPINFO("MAG3_DEVID", 13, SIM, mag_devid[2], 263178),
#endif
#if MAX_CONNECTED_MAGS > 3
// @Param: MAG4_DEVID
// @DisplayName: MAG2 Device ID
// @Description: Device ID of simulated compass 4
// @User: Advanced
AP_GROUPINFO("MAG4_DEVID", 14, SIM, mag_devid[3], 97283),
#endif
#if MAX_CONNECTED_MAGS > 4
// @Param: MAG5_DEVID
// @DisplayName: MAG5 Device ID
// @Description: Device ID of simulated compass 5
// @User: Advanced
AP_GROUPINFO("MAG5_DEVID", 15, SIM, mag_devid[4], 97795),
#endif
#if MAX_CONNECTED_MAGS > 5
// @Param: MAG6_DEVID
// @DisplayName: MAG6 Device ID
// @Description: Device ID of simulated compass 6
// @User: Advanced
AP_GROUPINFO("MAG6_DEVID", 16, SIM, mag_devid[5], 98051),
#endif
#if MAX_CONNECTED_MAGS > 6
// @Param: MAG7_DEVID
// @DisplayName: MAG7 Device ID
// @Description: Device ID of simulated compass 7
// @User: Advanced
AP_GROUPINFO("MAG7_DEVID", 17, SIM, mag_devid[6], 0),
#endif
#if MAX_CONNECTED_MAGS > 7
// @Param: MAG8_DEVID
// @DisplayName: MAG8 Device ID
// @Description: Device ID of simulated compass 8
// @User: Advanced
AP_GROUPINFO("MAG8_DEVID", 18, SIM, mag_devid[7], 0),
#endif
// @Param: MAG1_FAIL
// @DisplayName: MAG1 Failure
// @Description: Simulated failure of MAG1
// @Values: 0:Disabled, 1:MAG1 Failure
// @User: Advanced
AP_GROUPINFO("MAG1_FAIL", 26, SIM, mag_fail[0], 0),
#if HAL_COMPASS_MAX_SENSORS > 1
AP_GROUPINFO("MAG2_OFS", 19, SIM, mag_ofs[1], 0),
AP_GROUPINFO("MAG2_DIA", 20, SIM, mag_diag[1], 0),
AP_GROUPINFO("MAG2_ODI", 21, SIM, mag_offdiag[1], 0),
// @Param: MAG2_ORIENT
// @DisplayName: MAG2 Orientation
// @Description: MAG2 external compass orientation
// @User: Advanced
AP_GROUPINFO("MAG2_ORIENT", 22, SIM, mag_orient[1], 0),
// @Param: MAG2_FAIL
// @DisplayName: MAG2 Failure
// @Description: Simulated failure of MAG2
// @Values: 0:Disabled, 1:MAG2 Failure
// @User: Advanced
AP_GROUPINFO("MAG2_FAIL", 27, SIM, mag_fail[1], 0),
// @Param: MAG2_SCALING
// @DisplayName: MAG2 Scaling factor
// @Description: Scale the compass 2 to simulate sensor scale factor errors
// @User: Advanced
AP_GROUPINFO("MAG2_SCALING", 28, SIM, mag_scaling[1], 1),
#endif
#if HAL_COMPASS_MAX_SENSORS > 2
AP_GROUPINFO("MAG3_OFS", 23, SIM, mag_ofs[2], 0),
AP_GROUPINFO("MAG3_DIA", 24, SIM, mag_diag[2], 0),
AP_GROUPINFO("MAG3_ODI", 25, SIM, mag_offdiag[2], 0),
// @Param: MAG3_FAIL
// @DisplayName: MAG3 Failure
// @Description: Simulated failure of MAG3
// @Values: 0:Disabled, 1:MAG3 Failure
// @User: Advanced
AP_GROUPINFO("MAG3_FAIL", 29, SIM, mag_fail[2], 0),
// @Param: MAG3_SCALING
// @DisplayName: MAG3 Scaling factor
// @Description: Scale the compass 3 to simulate sensor scale factor errors
// @User: Advanced
AP_GROUPINFO("MAG3_SCALING", 30, SIM, mag_scaling[2], 1),
// @Param: MAG3_ORIENT
// @DisplayName: MAG3 Orientation
// @Description: MAG3 external compass orientation
// @User: Advanced
AP_GROUPINFO("MAG3_ORIENT", 36, SIM, mag_orient[2], 0),
#endif
// @Param: MAG_SAVE_IDS
// @DisplayName: Save MAG devids on startup
// @Description: This forces saving of compass devids on startup so that simulated compasses start as calibrated
// @Values: 0:Disabled, 1:Enabled
// @User: Advanced
AP_GROUPINFO("MAG_SAVE_IDS", 37, SIM, mag_save_ids, 1),
AP_GROUPEND
};
#ifdef SFML_JOYSTICK
const AP_Param::GroupInfo SIM::var_sfml_joystick[] = {
AP_GROUPINFO("SF_JS_STICK", 1, SIM, sfml_joystick_id, 0),
AP_GROUPINFO("SF_JS_AXIS1", 2, SIM, sfml_joystick_axis[0], sf::Joystick::Axis::X),
AP_GROUPINFO("SF_JS_AXIS2", 3, SIM, sfml_joystick_axis[1], sf::Joystick::Axis::Y),
AP_GROUPINFO("SF_JS_AXIS3", 4, SIM, sfml_joystick_axis[2], sf::Joystick::Axis::Z),
AP_GROUPINFO("SF_JS_AXIS4", 5, SIM, sfml_joystick_axis[3], sf::Joystick::Axis::U),
AP_GROUPINFO("SF_JS_AXIS5", 6, SIM, sfml_joystick_axis[4], sf::Joystick::Axis::V),
AP_GROUPINFO("SF_JS_AXIS6", 7, SIM, sfml_joystick_axis[5], sf::Joystick::Axis::R),
AP_GROUPINFO("SF_JS_AXIS7", 8, SIM, sfml_joystick_axis[6], sf::Joystick::Axis::PovX),
AP_GROUPINFO("SF_JS_AXIS8", 9, SIM, sfml_joystick_axis[7], sf::Joystick::Axis::PovY),
AP_GROUPEND
};
#endif //SFML_JOYSTICK
// INS SITL parameters
const AP_Param::GroupInfo SIM::var_ins[] = {
#if HAL_INS_TEMPERATURE_CAL_ENABLE
// @Param: IMUT_START
// @DisplayName: IMU temperature start
// @Description: Starting IMU temperature of a curve
AP_GROUPINFO("IMUT_START", 1, SIM, imu_temp_start, 25),
// @Param: IMUT_END
// @DisplayName: IMU temperature end
// @Description: Ending IMU temperature of a curve
AP_GROUPINFO("IMUT_END", 2, SIM, imu_temp_end, 45),
// @Param: IMUT_TCONST
// @DisplayName: IMU temperature time constant
// @Description: IMU temperature time constant of the curve
AP_GROUPINFO("IMUT_TCONST", 3, SIM, imu_temp_tconst, 300),
// @Param: IMUT_FIXED
// @DisplayName: IMU fixed temperature
// @Description: IMU fixed temperature by user
AP_GROUPINFO("IMUT_FIXED", 4, SIM, imu_temp_fixed, 0),
#endif
// @Param: ACC1_BIAS
// @DisplayName: Accel 1 bias
// @Description: bias of simulated accelerometer sensor
// @User: Advanced
// @Vector3Parameter: 1
AP_GROUPINFO("ACC1_BIAS", 5, SIM, accel_bias[0], 0),
#if INS_MAX_INSTANCES > 1
// @Param: ACC2_BIAS
// @DisplayName: Accel 2 bias
// @CopyFieldsFrom: SIM_ACC1_BIAS
// @Vector3Parameter: 1
AP_GROUPINFO("ACC2_BIAS", 6, SIM, accel_bias[1], 0),
#endif
#if INS_MAX_INSTANCES > 2
// @Param: ACC3_BIAS
// @DisplayName: Accel 3 bias
// @CopyFieldsFrom: SIM_ACC1_BIAS
// @Vector3Parameter: 1
AP_GROUPINFO("ACC3_BIAS", 7, SIM, accel_bias[2], 0),
#endif
// @Param: GYR1_RND
// @DisplayName: Gyro 1 motor noise factor
// @Description: scaling factor for simulated vibration from motors
// @User: Advanced
AP_GROUPINFO("GYR1_RND", 8, SIM, gyro_noise[0], 0),
#if INS_MAX_INSTANCES > 1
// @Param: GYR2_RND
// @DisplayName: Gyro 2 motor noise factor
// @CopyFieldsFrom: SIM_GYR1_RND
AP_GROUPINFO("GYR2_RND", 9, SIM, gyro_noise[1], 0),
#endif
#if INS_MAX_INSTANCES > 2
// @Param: GYR3_RND
// @DisplayName: Gyro 3 motor noise factor
// @CopyFieldsFrom: SIM_GYR1_RND
AP_GROUPINFO("GYR3_RND", 10, SIM, gyro_noise[2], 0),
#endif
// @Param: ACC1_RND
// @DisplayName: Accel 1 motor noise factor
// @Description: scaling factor for simulated vibration from motors
// @User: Advanced
AP_GROUPINFO("ACC1_RND", 11, SIM, accel_noise[0], 0),
#if INS_MAX_INSTANCES > 1
// @Param: ACC2_RND
// @DisplayName: Accel 2 motor noise factor
// @CopyFieldsFrom: SIM_ACC1_RND
AP_GROUPINFO("ACC2_RND", 12, SIM, accel_noise[1], 0),
#endif
#if INS_MAX_INSTANCES > 2
// @Param: ACC3_RND
// @DisplayName: Accel 3 motor noise factor
// @CopyFieldsFrom: SIM_ACC1_RND
AP_GROUPINFO("ACC3_RND", 13, SIM, accel_noise[2], 0),
#endif
// @Param: GYR1_SCALE
// @DisplayName: Gyro 1 scaling factor
// @Description: scaling factors applied to simulated gyroscope
// @User: Advanced
// @Vector3Parameter: 1
AP_GROUPINFO("GYR1_SCALE", 14, SIM, gyro_scale[0], 0),
#if INS_MAX_INSTANCES > 1
// @Param: GYR2_SCALE
// @DisplayName: Gyro 2 scaling factor
// @CopyFieldsFrom: SIM_GYR1_SCALE
// @Vector3Parameter: 1
AP_GROUPINFO("GYR2_SCALE", 15, SIM, gyro_scale[1], 0),
#endif
#if INS_MAX_INSTANCES > 2
// @Param: GYR3_SCALE
// @DisplayName: Gyro 3 scaling factor
// @CopyFieldsFrom: SIM_GYR1_SCALE
// @Vector3Parameter: 1
AP_GROUPINFO("GYR3_SCALE", 16, SIM, gyro_scale[2], 0),
#endif
// @Param: ACCEL1_FAIL
// @DisplayName: ACCEL1 Failure
// @Description: Simulated failure of ACCEL1
// @Values: 0:Disabled, 1:ACCEL1 Failure
// @User: Advanced
AP_GROUPINFO("ACCEL1_FAIL", 17, SIM, accel_fail[0], 0),
#if INS_MAX_INSTANCES > 1
// @Param: ACCEL2_FAIL
// @DisplayName: ACCEL2 Failure
// @Description: Simulated failure of ACCEL2
// @Values: 0:Disabled, 1:ACCEL2 Failure
// @User: Advanced
AP_GROUPINFO("ACCEL2_FAIL", 18, SIM, accel_fail[1], 0),
#endif
#if INS_MAX_INSTANCES > 2
// @Param: ACCEL3_FAIL
// @DisplayName: ACCEL3 Failure
// @Description: Simulated failure of ACCEL3
// @Values: 0:Disabled, 1:ACCEL3 Failure
// @User: Advanced
AP_GROUPINFO("ACCEL3_FAIL", 19, SIM, accel_fail[2], 0),
#endif
// @Param: GYR_FAIL_MSK
// @DisplayName: Gyro Failure Mask
// @Description: Determines if the gyro reading updates are stopped when for an IMU simulated failure by ACCELx_FAIL params
// @Values: 0:Disabled, 1:Readings stopped
// @User: Advanced
AP_GROUPINFO("GYR_FAIL_MSK", 20, SIM, gyro_fail_mask, 0),
// @Param: ACC_FAIL_MSK
// @DisplayName: Accelerometer Failure Mask
// @Description: Determines if the acclerometer reading updates are stopped when for an IMU simulated failure by ACCELx_FAIL params
// @Values: 0:Disabled, 1:Readings stopped
// @User: Advanced
AP_GROUPINFO("ACC_FAIL_MSK", 21, SIM, accel_fail_mask, 0),
// @Param: ACC1_SCAL
// @DisplayName: Accel 1 scaling factor
// @Description: scaling factors applied to simulated accelerometer
// @User: Advanced
// @Vector3Parameter: 1
AP_GROUPINFO("ACC1_SCAL", 22, SIM, accel_scale[0], 0),
#if INS_MAX_INSTANCES > 1
// @Param: ACC2_SCAL
// @DisplayName: Accel 2 scaling factor
// @CopyFieldsFrom: SIM_ACC1_SCAL
// @Vector3Parameter: 1
AP_GROUPINFO("ACC2_SCAL", 23, SIM, accel_scale[1], 0),
#endif
#if INS_MAX_INSTANCES > 2
// @Param: ACC3_SCAL
// @DisplayName: Accel 3 scaling factor
// @CopyFieldsFrom: SIM_ACC1_SCAL
// @Vector3Parameter: 1
AP_GROUPINFO("ACC3_SCAL", 24, SIM, accel_scale[2], 0),
#endif
AP_GROUPINFO("ACC_TRIM", 25, SIM, accel_trim, 0),
#if APM_BUILD_TYPE(APM_BUILD_Rover)
// @Param{Rover}: SAIL_TYPE
// @DisplayName: Sailboat simulation sail type
// @Description: 0: mainsail with sheet, 1: directly actuated wing
AP_GROUPINFO("SAIL_TYPE", 26, SIM, sail_type, 0),
#endif
// @Param: JSON_MASTER
// @DisplayName: JSON master instance
// @Description: the instance number to take servos from
AP_GROUPINFO("JSON_MASTER", 27, SIM, ride_along_master, 0),
// @Param: OH_MASK
// @DisplayName: SIM-on_hardware Output Enable Mask
// @Description: channels which are passed through to actual hardware when running sim on actual hardware
AP_GROUPINFO("OH_MASK", 28, SIM, on_hardware_output_enable_mask, 0),
#if AP_SIM_INS_FILE_ENABLED
// @Param: GYR_FILE_RW
// @DisplayName: Gyro data to/from files
// @Description: Read and write gyro data to/from files
// @Values: 0:Stop writing data, 1:Read data from file, 2:Write data to a file, 3: Read data from file and stop on EOF
AP_GROUPINFO("GYR_FILE_RW", 29, SIM, gyro_file_rw, INSFileMode::INS_FILE_NONE),
// @Param: ACC_FILE_RW
// @DisplayName: Accelerometer data to/from files
// @Description: Read and write accelerometer data to/from files
// @Values: 0:Stop writing data, 1:Read data from file, 2:Write data to a file, 3: Read data from file and stop on EOF
AP_GROUPINFO("ACC_FILE_RW", 30, SIM, accel_file_rw, INSFileMode::INS_FILE_NONE),
#endif
// @Param: GYR1_BIAS_X
// @DisplayName: First Gyro bias on X axis
// @Description: First Gyro bias on X axis
// @Units: rad/s
// @User: Advanced
// @Param: GYR1_BIAS_Y
// @DisplayName: First Gyro bias on Y axis
// @Description: First Gyro bias on Y axis
// @Units: rad/s
// @User: Advanced
// @Param: GYR1_BIAS_Z
// @DisplayName: First Gyro bias on Z axis
// @Description: First Gyro bias on Z axis
// @Units: rad/s
// @User: Advanced
AP_GROUPINFO("GYR1_BIAS", 31, SIM, gyro_bias[0], 0),
#if INS_MAX_INSTANCES > 1
// @Param: GYR2_BIAS_X
// @CopyFieldsFrom: SIM_GYR1_BIAS_X
// @DisplayName: Second Gyro bias on X axis
// @Description: Second Gyro bias on X axis
// @Param: GYR2_BIAS_Y
// @CopyFieldsFrom: SIM_GYR1_BIAS_Y
// @DisplayName: Second Gyro bias on Y axis
// @Description: Second Gyro bias on Y axis
// @Param: GYR2_BIAS_Z
// @CopyFieldsFrom: SIM_GYR1_BIAS_Z
// @DisplayName: Second Gyro bias on Z axis
// @Description: Second Gyro bias on Z axis
AP_GROUPINFO("GYR2_BIAS", 32, SIM, gyro_bias[1], 0),
#endif
#if INS_MAX_INSTANCES > 2
// @Param: GYR3_BIAS_X
// @CopyFieldsFrom: SIM_GYR1_BIAS_X
// @DisplayName: Third Gyro bias on X axis
// @Description: Third Gyro bias on X axis
// @Param: GYR3_BIAS_Y
// @CopyFieldsFrom: SIM_GYR1_BIAS_Y
// @DisplayName: Third Gyro bias on Y axis
// @Description: Third Gyro bias on Y axis
// @Param: GYR3_BIAS_Z
// @CopyFieldsFrom: SIM_GYR1_BIAS_Z
// @DisplayName: Third Gyro bias on Z axis
// @Description: Third Gyro bias on Z axis
AP_GROUPINFO("GYR3_BIAS", 33, SIM, gyro_bias[2], 0),
#endif
#if INS_MAX_INSTANCES > 3
// @Param: ACC4_SCAL
// @DisplayName: Accel 4 scaling factor
// @CopyFieldsFrom: SIM_ACC1_SCAL
// @Vector3Parameter: 1
AP_GROUPINFO("ACC4_SCAL", 34, SIM, accel_scale[3], 0),
// @Param: ACCEL4_FAIL
// @DisplayName: ACCEL4 Failure
// @Description: Simulated failure of ACCEL4
// @Values: 0:Disabled, 1:ACCEL4 Failure
// @User: Advanced
AP_GROUPINFO("ACCEL4_FAIL", 35, SIM, accel_fail[3], 0),
// @Param: GYR4_SCALE
// @DisplayName: Gyro 4 scaling factor
// @CopyFieldsFrom: SIM_GYR1_SCALE
// @Vector3Parameter: 1
AP_GROUPINFO("GYR4_SCALE", 36, SIM, gyro_scale[3], 0),
// @Param: ACC4_RND
// @DisplayName: Accel 4 motor noise factor
// @CopyFieldsFrom: SIM_ACC1_RND
AP_GROUPINFO("ACC4_RND", 37, SIM, accel_noise[3], 0),
// @Param: GYR4_RND
// @DisplayName: Gyro 4 motor noise factor
// @CopyFieldsFrom: SIM_GYR1_RND
AP_GROUPINFO("GYR4_RND", 38, SIM, gyro_noise[3], 0),
// @Param: ACC4_BIAS
// @DisplayName: Accel 4 bias
// @CopyFieldsFrom: SIM_ACC1_BIAS
// @Vector3Parameter: 1
AP_GROUPINFO("ACC4_BIAS", 39, SIM, accel_bias[3], 0),
// @Param: GYR4_BIAS_X
// @CopyFieldsFrom: SIM_GYR1_BIAS_X
// @DisplayName: Fourth Gyro bias on X axis
// @Description: Fourth Gyro bias on X axis
// @Param: GYR4_BIAS_Y
// @CopyFieldsFrom: SIM_GYR1_BIAS_Y
// @DisplayName: Fourth Gyro bias on Y axis
// @Description: Fourth Gyro bias on Y axis
// @Param: GYR4_BIAS_Z
// @CopyFieldsFrom: SIM_GYR1_BIAS_Z
// @DisplayName: Fourth Gyro bias on Z axis
// @Description: Fourth Gyro bias on Z axis
AP_GROUPINFO("GYR4_BIAS", 40, SIM, gyro_bias[3], 0),
#endif
#if INS_MAX_INSTANCES > 4
// @Param: ACC5_SCAL
// @DisplayName: Accel 4 scaling factor
// @CopyFieldsFrom: SIM_ACC1_SCAL
// @Vector3Parameter: 1
AP_GROUPINFO("ACC5_SCAL", 41, SIM, accel_scale[4], 0),
// @Param: ACCEL5_FAIL
// @DisplayName: ACCEL5 Failure
// @Description: Simulated failure of ACCEL5
// @Values: 0:Disabled, 1:ACCEL5 Failure
// @User: Advanced
AP_GROUPINFO("ACCEL5_FAIL", 42, SIM, accel_fail[4], 0),
// @Param: GYR5_SCALE
// @DisplayName: Gyro 5 scaling factor
// @CopyFieldsFrom: SIM_GYR1_SCALE
// @Vector3Parameter: 1
AP_GROUPINFO("GYR5_SCALE", 43, SIM, gyro_scale[4], 0),
// @Param: ACC5_RND
// @DisplayName: Accel 5 motor noise factor
// @CopyFieldsFrom: SIM_ACC1_RND
AP_GROUPINFO("ACC5_RND", 44, SIM, accel_noise[4], 0),
// @Param: GYR5_RND
// @DisplayName: Gyro 5 motor noise factor
// @CopyFieldsFrom: SIM_GYR1_RND
AP_GROUPINFO("GYR5_RND", 45, SIM, gyro_noise[4], 0),
// @Param: ACC5_BIAS
// @DisplayName: Accel 5 bias
// @CopyFieldsFrom: SIM_ACC1_BIAS
// @Vector3Parameter: 1
AP_GROUPINFO("ACC5_BIAS", 46, SIM, accel_bias[4], 0),
// @Param: GYR5_BIAS_X
// @CopyFieldsFrom: SIM_GYR1_BIAS_X
// @DisplayName: Fifth Gyro bias on X axis
// @Description: Fifth Gyro bias on X axis
// @Param: GYR5_BIAS_Y
// @CopyFieldsFrom: SIM_GYR1_BIAS_Y
// @DisplayName: Fifth Gyro bias on Y axis
// @Description: Fifth Gyro bias on Y axis
// @Param: GYR5_BIAS_Z
// @CopyFieldsFrom: SIM_GYR1_BIAS_Z
// @DisplayName: Fifth Gyro bias on Z axis
// @Description: Fifth Gyro bias on Z axis
AP_GROUPINFO("GYR5_BIAS", 47, SIM, gyro_bias[4], 0),
#endif
// @Param: OH_RELAY_MSK
// @DisplayName: SIM-on_hardware Relay Enable Mask
// @Description: Allow relay output operation when running SIM-on-hardware
AP_GROUPINFO("OH_RELAY_MSK", 48, SIM, on_hardware_relay_enable_mask, SIM_DEFAULT_ENABLED_RELAY_CHANNELS),
// @Param: CLAMP_CH
// @DisplayName: Simulated Clamp Channel
// @Description: If non-zero the vehicle will be clamped in position until the value on this servo channel passes 1800PWM
AP_GROUPINFO("CLAMP_CH", 49, SIM, clamp_ch, 0),
// the IMUT parameters must be last due to the enable parameters
#if HAL_INS_TEMPERATURE_CAL_ENABLE
AP_SUBGROUPINFO(imu_tcal[0], "IMUT1_", 61, SIM, AP_InertialSensor_TCal),
#if INS_MAX_INSTANCES > 1
AP_SUBGROUPINFO(imu_tcal[1], "IMUT2_", 62, SIM, AP_InertialSensor_TCal),
#endif
#if INS_MAX_INSTANCES > 2
AP_SUBGROUPINFO(imu_tcal[2], "IMUT3_", 63, SIM, AP_InertialSensor_TCal),
#endif
#if INS_MAX_INSTANCES > 3
AP_SUBGROUPINFO(imu_tcal[3], "IMUT4_", 60, SIM, AP_InertialSensor_TCal),
#endif
#if INS_MAX_INSTANCES > 4
AP_SUBGROUPINFO(imu_tcal[4], "IMUT5_", 59, SIM, AP_InertialSensor_TCal),
#endif
#endif // HAL_INS_TEMPERATURE_CAL_ENABLE
AP_GROUPEND
};
// user settable parameters for the physics models
const AP_Param::GroupInfo SIM::ModelParm::var_info[] = {
#if AP_SIM_SHIP_ENABLED
// @Group: SHIP_
// @Path: ./SIM_Ship.cpp
AP_SUBGROUPINFO(shipsim, "SHIP_", 1, SIM::ModelParm, ShipSim),
#endif
#if AP_SIM_STRATOBLIMP_ENABLED
// @Group: SB_
// @Path: ./SIM_StratoBlimp.cpp
AP_SUBGROUPPTR(stratoblimp_ptr, "SB_", 2, SIM::ModelParm, StratoBlimp),
#endif
#if AP_SIM_GLIDER_ENABLED
// @Group: GLD_
// @Path: ./SIM_Glider.cpp
AP_SUBGROUPPTR(glider_ptr, "GLD_", 3, SIM::ModelParm, Glider),
#endif
#if AP_SIM_SLUNGPAYLOAD_ENABLED
// @Group: SLUP_
// @Path: ./SIM_SlungPayload.cpp
AP_SUBGROUPINFO(slung_payload_sim, "SLUP_", 4, SIM::ModelParm, SlungPayloadSim),
#endif
#if AP_SIM_FLIGHTAXIS_ENABLED
// @Group: RFL_
// @Path: ./SIM_FlightAxis.cpp
AP_SUBGROUPPTR(flightaxis_ptr, "RFL_", 5, SIM::ModelParm, FlightAxis),
#endif
#if AP_SIM_TETHER_ENABLED
// @Group: TETH_
// @Path: ./SIM_Tether.cpp
AP_SUBGROUPINFO(tether_sim, "TETH_", 6, SIM::ModelParm, TetherSim),
#endif
AP_GROUPEND
};
const Location post_origin {
518752066,
146487830,
0,
Location::AltFrame::ABSOLUTE
};
/* report SITL state via MAVLink SIMSTATE*/
void SIM::simstate_send(mavlink_channel_t chan) const
{
if (stop_MAVLink_sim_state) {
// Sim only MAVLink messages disabled to give more relaistic data rates
return;
}
float yaw;
// convert to same conventions as DCM
yaw = state.yawDeg;
if (yaw > 180) {
yaw -= 360;
}
mavlink_msg_simstate_send(chan,
ToRad(state.rollDeg),
ToRad(state.pitchDeg),
ToRad(yaw),
state.xAccel,
state.yAccel,
state.zAccel,
radians(state.rollRate),
radians(state.pitchRate),
radians(state.yawRate),
state.latitude*1.0e7,
state.longitude*1.0e7);
}
/* report SITL state via MAVLink SIM_STATE */
void SIM::sim_state_send(mavlink_channel_t chan) const
{
if (stop_MAVLink_sim_state) {
// Sim only MAVLink messages disabled to give more relaistic data rates
return;
}
// convert to same conventions as DCM
float yaw = state.yawDeg;
if (yaw > 180) {
yaw -= 360;
}
mavlink_msg_sim_state_send(chan,
state.quaternion.q1,
state.quaternion.q2,
state.quaternion.q3,
state.quaternion.q4,
ToRad(state.rollDeg),
ToRad(state.pitchDeg),
ToRad(yaw),
state.xAccel,
state.yAccel,
state.zAccel,
radians(state.rollRate),
radians(state.pitchRate),
radians(state.yawRate),
state.latitude*1.0e7,
state.longitude*1.0e7,
(float)state.altitude,
0.0,
0.0,
state.speedN,
state.speedE,
state.speedD,
(int32_t)(state.latitude*1.0e7),
(int32_t)(state.longitude*1.0e7));
}
#if HAL_LOGGING_ENABLED
/* report SITL state to AP_Logger */
void SIM::Log_Write_SIMSTATE()
{
float yaw;
// convert to same conventions as DCM
yaw = state.yawDeg;
if (yaw > 180) {
yaw -= 360;
}
struct log_AHRS pkt = {
LOG_PACKET_HEADER_INIT(LOG_SIMSTATE_MSG),
time_us : AP_HAL::micros64(),
roll : (int16_t)(state.rollDeg*100),
pitch : (int16_t)(state.pitchDeg*100),
yaw : (uint16_t)(wrap_360_cd(yaw*100)),
alt : (float)state.altitude,
lat : (int32_t)(state.latitude*1.0e7),
lng : (int32_t)(state.longitude*1.0e7),
q1 : state.quaternion.q1,
q2 : state.quaternion.q2,
q3 : state.quaternion.q3,
q4 : state.quaternion.q4,
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
#endif
/*
convert a set of roll rates from earth frame to body frame
output values are in radians/second
*/
void SIM::convert_body_frame(double rollDeg, double pitchDeg,
double rollRate, double pitchRate, double yawRate,
double *p, double *q, double *r)
{
double phi, theta, phiDot, thetaDot, psiDot;
phi = ToRad(rollDeg);
theta = ToRad(pitchDeg);
phiDot = ToRad(rollRate);
thetaDot = ToRad(pitchRate);
psiDot = ToRad(yawRate);
*p = phiDot - psiDot*sin(theta);
*q = cos(phi)*thetaDot + sin(phi)*psiDot*cos(theta);
*r = cos(phi)*psiDot*cos(theta) - sin(phi)*thetaDot;
}
/*
convert angular velocities from body frame to
earth frame.
all inputs and outputs are in radians/s
*/
Vector3f SIM::convert_earth_frame(const Matrix3f &dcm, const Vector3f &gyro)
{
float p = gyro.x;
float q = gyro.y;
float r = gyro.z;
float phi, theta, psi;
dcm.to_euler(&phi, &theta, &psi);
float phiDot = p + tanf(theta)*(q*sinf(phi) + r*cosf(phi));
float thetaDot = q*cosf(phi) - r*sinf(phi);
if (fabsf(cosf(theta)) < 1.0e-20f) {
theta += 1.0e-10f;
}
float psiDot = (q*sinf(phi) + r*cosf(phi))/cosf(theta);
return Vector3f(phiDot, thetaDot, psiDot);
}
// get the rangefinder reading for the desired rotation, returns -1 for no data
float SIM::get_rangefinder(uint8_t instance) {
if (instance < ARRAY_SIZE(state.rangefinder_m)) {
return state.rangefinder_m[instance];
}
return nanf("");
};
float SIM::measure_distance_at_angle_bf(const Location &location, float angle) const
{
// should we populate state.rangefinder_m[...] from this?
Vector2f vehicle_pos_cm;
if (!location.get_vector_xy_from_origin_NE(vehicle_pos_cm)) {
// should probably use SITL variables...
return 0.0f;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
static uint64_t count = 0;
if (count == 0) {
unlink("/tmp/rayfile.scr");
unlink("/tmp/intersectionsfile.scr");
}
count++;
// the 1000 here is so the files don't grow unbounded
const bool write_debug_files = count < 1000;
FILE *rayfile = nullptr;
if (write_debug_files) {
rayfile = fopen("/tmp/rayfile.scr", "a");
}
#endif
// cast a ray from location out 200m...
Location location2 = location;
location2.offset_bearing(wrap_180(angle + state.yawDeg), 200);
Vector2f ray_endpos_cm;
if (!location2.get_vector_xy_from_origin_NE(ray_endpos_cm)) {
// should probably use SITL variables...
return 0.0f;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (rayfile != nullptr) {
::fprintf(rayfile, "map icon %f %f barrell\n", location2.lat*1e-7, location2.lng*1e-7);
fclose(rayfile);
}
// setup a grid of posts
FILE *postfile = nullptr;
FILE *intersectionsfile = nullptr;
if (write_debug_files) {
static bool postfile_written;
if (!postfile_written) {
::fprintf(stderr, "Writing /tmp/post-locations.scr\n");
postfile_written = true;
postfile = fopen("/tmp/post-locations.scr", "w");
}
intersectionsfile = fopen("/tmp/intersections.scr", "a");
}
#endif
const float radius_cm = 100.0f;
float min_dist_cm = 1000000.0;
const uint8_t num_post_offset = 10;
for (int8_t x=-num_post_offset; x<num_post_offset; x++) {
for (int8_t y=-num_post_offset; y<num_post_offset; y++) {
Location post_location = post_origin;
post_location.offset(x*10+3, y*10+2);
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (postfile != nullptr) {
::fprintf(postfile, "map circle %f %f %f blue\n", post_location.lat*1e-7, post_location.lng*1e-7, radius_cm*0.01);
}
#endif
Vector2f post_position_cm;
if (!post_location.get_vector_xy_from_origin_NE(post_position_cm)) {
// should probably use SITL variables...
return 0.0f;
}
Vector2f intersection_point_cm;
if (Vector2f::circle_segment_intersection(ray_endpos_cm, vehicle_pos_cm, post_position_cm, radius_cm, intersection_point_cm)) {
float dist_cm = (intersection_point_cm-vehicle_pos_cm).length();
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (intersectionsfile != nullptr) {
Location intersection_point = location;
intersection_point.offset(intersection_point_cm.x*0.01,
intersection_point_cm.y*0.01);
::fprintf(intersectionsfile,
"map icon %f %f barrell\n",
intersection_point.lat*1e-7,
intersection_point.lng*1e-7);
}
#endif
if (dist_cm < min_dist_cm) {
min_dist_cm = dist_cm;
}
}
}
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (postfile != nullptr) {
fclose(postfile);
}
if (intersectionsfile != nullptr) {
fclose(intersectionsfile);
}
#endif
// ::fprintf(stderr, "Distance @%f = %fm\n", angle, min_dist_cm*0.01f);
return min_dist_cm * 0.01f;
}
} // namespace SITL
namespace AP {
SITL::SIM *sitl()
{
return SITL::SIM::get_singleton();
}
};
#endif // AP_SIM_ENABLED