Ardupilot2/libraries/AP_DCM/AP_DCM.cpp
Andrew Tridgell b11b571778 DCM: fixed the averaging of accel values for update_DCM_fast()
this should improve drift correction for ArduCopter
2012-03-10 10:34:28 +11:00

598 lines
17 KiB
C++

#define RADX100 0.000174532925
#define DEGX100 5729.57795
/*
APM_DCM_FW.cpp - DCM AHRS Library, fixed wing version, for Ardupilot Mega
Code by Doug Weibel, Jordi Muñoz and Jose Julio. DIYDrones.com
This library works with the ArduPilot Mega and "Oilpan"
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Methods:
update_DCM() : Updates the AHRS by integrating the rotation matrix over time using the IMU object data
get_gyro() : Returns gyro vector corrected for bias
get_accel() : Returns accelerometer vector
get_dcm_matrix() : Returns dcm matrix
*/
#include <AP_DCM.h>
#define OUTPUTMODE 1 // This is just used for debugging, remove later
#define ToRad(x) (x*0.01745329252) // *pi/180
#define ToDeg(x) (x*57.2957795131) // *180/pi
//#define Kp_ROLLPITCH 0.05967 // .0014 * 418/9.81 Pitch&Roll Drift Correction Proportional Gain
//#define Ki_ROLLPITCH 0.00001278 // 0.0000003 * 418/9.81 Pitch&Roll Drift Correction Integrator Gain
//#define Ki_ROLLPITCH 0.0 // 0.0000003 * 418/9.81 Pitch&Roll Drift Correction Integrator Gain
//#define Kp_YAW 0.8 // Yaw Drift Correction Porportional Gain
//#define Ki_YAW 0.00004 // Yaw Drift CorrectionIntegrator Gain
// this is the speed in cm/s above which we first get a yaw lock with
// the GPS
#define GPS_SPEED_MIN 300
// this is the speed in cm/s at which we stop using drift correction
// from the GPS and wait for the ground speed to get above GPS_SPEED_MIN
#define GPS_SPEED_RESET 100
void
AP_DCM::set_compass(Compass *compass)
{
_compass = compass;
}
/**************************************************/
void
AP_DCM::update_DCM_fast(void)
{
float delta_t;
Vector3f accel;
_imu->update();
_gyro_vector = _imu->get_gyro(); // Get current values for IMU sensors
// add the current accel vector into our averaging filter
accel = _imu->get_accel();
_accel_sum += accel;
_accel_sum_count++;
delta_t = _imu->get_delta_time();
matrix_update(delta_t); // Integrate the DCM matrix
switch(_toggle++){
case 0:
normalize(); // Normalize the DCM matrix
break;
case 1:
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
break;
case 2:
_accel_vector = _accel_sum / _accel_sum_count;
_accel_sum_count = 0;
drift_correction(); // Normalize the DCM matrix
break;
case 3:
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
break;
case 4:
euler_yaw();
break;
default:
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
_toggle = 0;
break;
}
}
/**************************************************/
void
AP_DCM::update_DCM(void)
{
float delta_t;
Vector3f accel;
_imu->update();
_gyro_vector = _imu->get_gyro(); // Get current values for IMU sensors
// update_DCM() doesn't do averaging over the accel vectors,
// just a mild lowpass filter
accel = _imu->get_accel();
_accel_vector = (accel * 0.5) + (_accel_vector * 0.5);
delta_t = _imu->get_delta_time();
matrix_update(delta_t); // Integrate the DCM matrix
normalize(); // Normalize the DCM matrix
drift_correction(); // Perform drift correction
euler_angles(); // Calculate pitch, roll, yaw for stabilization and navigation
}
/**************************************************/
//For Debugging
/*
void
printm(const char *l, Matrix3f &m)
{ Serial.println(" "); Serial.println(l);
Serial.print(m.a.x, 12); Serial.print(" "); Serial.print(m.a.y, 12); Serial.print(" "); Serial.println(m.a.z, 12);
Serial.print(m.b.x, 12); Serial.print(" "); Serial.print(m.b.y, 12); Serial.print(" "); Serial.println(m.b.z, 12);
Serial.print(m.c.x, 12); Serial.print(" "); Serial.print(m.c.y, 12); Serial.print(" "); Serial.println(m.c.z, 12);
Serial.print(*(uint32_t *)&(m.a.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.a.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.a.z), HEX);
Serial.print(*(uint32_t *)&(m.b.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.b.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.b.z), HEX);
Serial.print(*(uint32_t *)&(m.c.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.c.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.c.z), HEX);
}
*/
/**************************************************/
void
AP_DCM::matrix_update(float _G_Dt)
{
Matrix3f update_matrix;
Matrix3f temp_matrix;
_omega_integ_corr = _gyro_vector + _omega_I; // Used for _centripetal correction (theoretically better than _omega)
_omega = _omega_integ_corr + _omega_P; // Equation 16, adding proportional and integral correction terms
_omega_smoothed = (_omega_smoothed * 0.5) + (_omega_integ_corr * 0.5);
#if OUTPUTMODE == 1
float tmp = _G_Dt * _omega.x;
update_matrix.b.z = -tmp; // -delta Theta x
update_matrix.c.y = tmp; // delta Theta x
tmp = _G_Dt * _omega.y;
update_matrix.c.x = -tmp; // -delta Theta y
update_matrix.a.z = tmp; // delta Theta y
tmp = _G_Dt * _omega.z;
update_matrix.b.x = tmp; // delta Theta z
update_matrix.a.y = -tmp; // -delta Theta z
update_matrix.a.x = 0;
update_matrix.b.y = 0;
update_matrix.c.z = 0;
#else // Uncorrected data (no drift correction)
update_matrix.a.x = 0;
update_matrix.a.y = -_G_Dt * _gyro_vector.z;
update_matrix.a.z = _G_Dt * _gyro_vector.y;
update_matrix.b.x = _G_Dt * _gyro_vector.z;
update_matrix.b.y = 0;
update_matrix.b.z = -_G_Dt * _gyro_vector.x;
update_matrix.c.x = -_G_Dt * _gyro_vector.y;
update_matrix.c.y = _G_Dt * _gyro_vector.x;
update_matrix.c.z = 0;
#endif
temp_matrix = _dcm_matrix * update_matrix;
_dcm_matrix = _dcm_matrix + temp_matrix; // Equation 17
}
// adjust an accelerometer vector for centripetal force
void
AP_DCM::accel_adjust(Vector3f &accel)
{
float veloc;
veloc = _gps->ground_speed / 100; // We are working with acceleration in m/s^2 units
// We are working with a modified version of equation 26 as
// our IMU object reports acceleration in the positive axis
// direction as positive
// Equation 26 broken up into separate pieces
accel.y -= _omega_smoothed.z * veloc;
accel.z += _omega_smoothed.y * veloc;
}
/*
reset the DCM matrix and omega. Used on ground start, and on
extreme errors in the matrix
*/
void
AP_DCM::matrix_reset(bool recover_eulers)
{
if (_compass != NULL) {
_compass->null_offsets_disable();
}
// reset the integration terms
_omega_I.x = 0.0f;
_omega_I.y = 0.0f;
_omega_I.z = 0.0f;
_omega_P = _omega_I;
_omega_integ_corr = _omega_I;
_omega_smoothed = _omega_I;
_omega = _omega_I;
// if the caller wants us to try to recover to the current
// attitude then calculate the dcm matrix from the current
// roll/pitch/yaw values
if (recover_eulers && !isnan(roll) && !isnan(pitch) && !isnan(yaw)) {
rotation_matrix_from_euler(_dcm_matrix, roll, pitch, yaw);
} else {
// otherwise make it flat
rotation_matrix_from_euler(_dcm_matrix, 0, 0, 0);
}
if (_compass != NULL) {
_compass->null_offsets_enable(); // This call is needed to restart the nulling
// Otherwise the reset in the DCM matrix can mess up
// the nulling
}
}
/*
check the DCM matrix for pathological values
*/
void
AP_DCM::check_matrix(void)
{
if (_dcm_matrix.is_nan()) {
//Serial.printf("ERROR: DCM matrix NAN\n");
SITL_debug("ERROR: DCM matrix NAN\n");
renorm_blowup_count++;
matrix_reset(true);
return;
}
// some DCM matrix values can lead to an out of range error in
// the pitch calculation via asin(). These NaN values can
// feed back into the rest of the DCM matrix via the
// error_course value.
if (!(_dcm_matrix.c.x < 1.0 &&
_dcm_matrix.c.x > -1.0)) {
// We have an invalid matrix. Force a normalisation.
renorm_range_count++;
normalize();
if (_dcm_matrix.is_nan() ||
fabs(_dcm_matrix.c.x) > 10) {
// normalisation didn't fix the problem! We're
// in real trouble. All we can do is reset
//Serial.printf("ERROR: DCM matrix error. _dcm_matrix.c.x=%f\n",
// _dcm_matrix.c.x);
SITL_debug("ERROR: DCM matrix error. _dcm_matrix.c.x=%f\n",
_dcm_matrix.c.x);
renorm_blowup_count++;
matrix_reset(true);
}
}
}
/*************************************************
Direction Cosine Matrix IMU: Theory
William Premerlani and Paul Bizard
Numerical errors will gradually reduce the orthogonality conditions expressed by equation 5
to approximations rather than identities. In effect, the axes in the two frames of reference no
longer describe a rigid body. Fortunately, numerical error accumulates very slowly, so it is a
simple matter to stay ahead of it.
We call the process of enforcing the orthogonality conditions ÒrenormalizationÓ.
*/
void
AP_DCM::normalize(void)
{
float error = 0;
Vector3f temporary[3];
int problem = 0;
error = _dcm_matrix.a * _dcm_matrix.b; // eq.18
temporary[0] = _dcm_matrix.b;
temporary[1] = _dcm_matrix.a;
temporary[0] = _dcm_matrix.a - (temporary[0] * (0.5f * error)); // eq.19
temporary[1] = _dcm_matrix.b - (temporary[1] * (0.5f * error)); // eq.19
temporary[2] = temporary[0] % temporary[1]; // c= a x b // eq.20
_dcm_matrix.a = renorm(temporary[0], problem);
_dcm_matrix.b = renorm(temporary[1], problem);
_dcm_matrix.c = renorm(temporary[2], problem);
if (problem == 1) { // Our solution is blowing up and we will force back to initial condition. Hope we are not upside down!
matrix_reset(true);
}
}
/**************************************************/
Vector3f
AP_DCM::renorm(Vector3f const &a, int &problem)
{
float renorm_val;
// numerical errors will slowly build up over time in DCM,
// causing inaccuracies. We can keep ahead of those errors
// using the renormalization technique from the DCM IMU paper
// (see equations 18 to 21).
// For APM we don't bother with the taylor expansion
// optimisation from the paper as on our 2560 CPU the cost of
// the sqrt() is 44 microseconds, and the small time saving of
// the taylor expansion is not worth the potential of
// additional error buildup.
// Note that we can get significant renormalisation values
// when we have a larger delta_t due to a glitch eleswhere in
// APM, such as a I2c timeout or a set of EEPROM writes. While
// we would like to avoid these if possible, if it does happen
// we don't want to compound the error by making DCM less
// accurate.
renorm_val = 1.0 / sqrt(a * a);
// keep the average for reporting
_renorm_val_sum += renorm_val;
_renorm_val_count++;
if (!(renorm_val < 2.0 && renorm_val > 0.5)) {
// this is larger than it should get - log it as a warning
renorm_range_count++;
if (!(renorm_val < 1.0e6 && renorm_val > 1.0e-6)) {
// we are getting values which are way out of
// range, we will reset the matrix and hope we
// can recover our attitude using drift
// correction before we hit the ground!
problem = 1;
//Serial.printf("ERROR: DCM renormalisation error. renorm_val=%f\n",
// renorm_val);
SITL_debug("ERROR: DCM renormalisation error. renorm_val=%f\n",
renorm_val);
renorm_blowup_count++;
}
}
return (a * renorm_val);
}
/**************************************************/
void
AP_DCM::drift_correction(void)
{
float error_course = 0;
float accel_weight;
float integrator_magnitude;
Vector3f accel;
Vector3f error;
float error_norm;
const float gravity_squared = (9.80665*9.80665);
accel = _accel_vector;
// if enabled, use the GPS to correct our accelerometer vector
// for centripetal forces
if(_centripetal &&
_gps != NULL &&
_gps->status() == GPS::GPS_OK) {
accel_adjust(accel);
}
//*****Roll and Pitch***************
// calculate the z component of the accel vector assuming it
// has a length of 9.8. This discards the z accelerometer
// sensor reading completely. Logs show that the z accel is
// the noisest, and it seems that using just the x and y accel
// values gives a better attitude estimate than including the
// z accel
float zsquared = gravity_squared - ((accel.x * accel.x) + (accel.y * accel.y));
if (zsquared < 0) {
accel_weight = 0;
} else {
if (accel.z > 0) {
accel.z = sqrt(zsquared);
} else {
accel.z = -sqrt(zsquared);
}
// this is arbitrary, and can be removed once we get
// ki and kp right
accel_weight = 0.6;
_health = constrain(_health+(0.02 * (accel_weight - .5)), 0, 1);
error = _dcm_matrix.c % accel;
// error_roll_pitch are in Accel m/s^2 units
// Limit max error_roll_pitch to limit max omega_P and omega_I
error_norm = error.length();
if (error_norm > 2) {
error *= (2 / error_norm);
}
_omega_P = error * (_kp_roll_pitch * accel_weight);
_omega_I += error * (_ki_roll_pitch * accel_weight);
}
// these sums support the reporting of the DCM state via MAVLink
_accel_weight_sum += accel_weight;
_accel_weight_count++;
_error_rp_sum += error_norm;
_error_rp_count++;
//*****YAW***************
if (_compass && _compass->use_for_yaw()) {
if (_have_initial_yaw) {
// Equation 23, Calculating YAW error
// We make the gyro YAW drift correction based
// on compass magnetic heading
error_course = (_dcm_matrix.a.x * _compass->heading_y) - (_dcm_matrix.b.x * _compass->heading_x);
} else {
// this is our first estimate of the yaw,
// construct a DCM matrix based on the current
// roll/pitch and the compass heading, but
// first ensure the compass heading has been
// calculated
_compass->calculate(_dcm_matrix);
// now construct a new DCM matrix
_compass->null_offsets_disable();
rotation_matrix_from_euler(_dcm_matrix, roll, pitch, _compass->heading);
_compass->null_offsets_enable();
_have_initial_yaw = true;
}
} else if (_gps && _gps->status() == GPS::GPS_OK) {
// Use GPS Ground course to correct yaw gyro drift
if (_gps->ground_speed >= GPS_SPEED_MIN) {
if (_have_initial_yaw) {
float course_over_ground_x = cos(ToRad(_gps->ground_course/100.0));
float course_over_ground_y = sin(ToRad(_gps->ground_course/100.0));
// Equation 23, Calculating YAW error
error_course = (_dcm_matrix.a.x * course_over_ground_y) - (_dcm_matrix.b.x * course_over_ground_x);
} else {
// when we first start moving, set the
// DCM matrix to the current
// roll/pitch values, but with yaw
// from the GPS
if (_compass) {
_compass->null_offsets_disable();
}
rotation_matrix_from_euler(_dcm_matrix, roll, pitch, ToRad(_gps->ground_course));
if (_compass) {
_compass->null_offsets_enable();
}
_have_initial_yaw = true;
error_course = 0;
}
} else if (_gps->ground_speed >= GPS_SPEED_RESET) {
// we are not going fast enough to use GPS for
// course correction, but we won't reset
// _have_initial_yaw yet, instead we just let
// the gyro handle yaw
error_course = 0;
} else {
// we are moving very slowly. Reset
// _have_initial_yaw and adjust our heading
// rapidly next time we get a good GPS ground
// speed
error_course = 0;
_have_initial_yaw = false;
}
}
error = _dcm_matrix.c * error_course; // Equation 24, Applys the yaw correction to the XYZ rotation of the aircraft, depeding the position.
_omega_P += error * _kp_yaw; // Adding yaw correction to proportional correction vector.
_omega_I += error * _ki_yaw; // adding yaw correction to integrator correction vector.
// Here we will place a limit on the integrator so that the integrator cannot ever exceed ~30 degrees/second
integrator_magnitude = _omega_I.length();
if (integrator_magnitude > radians(30)) {
_omega_I *= (radians(30) / integrator_magnitude);
}
_error_yaw_sum += error_course;
_error_yaw_count++;
//Serial.print("*");
}
/**************************************************/
void
AP_DCM::euler_angles(void)
{
check_matrix();
calculate_euler_angles(_dcm_matrix, &roll, &pitch, &yaw);
roll_sensor = degrees(roll) * 100;
pitch_sensor = degrees(pitch) * 100;
yaw_sensor = degrees(yaw) * 100;
if (yaw_sensor < 0)
yaw_sensor += 36000;
}
void
AP_DCM::euler_rp(void)
{
check_matrix();
calculate_euler_angles(_dcm_matrix, &roll, &pitch, NULL);
roll_sensor = roll * DEGX100; //degrees(roll) * 100;
pitch_sensor = pitch * DEGX100; //degrees(pitch) * 100;
}
void
AP_DCM::euler_yaw(void)
{
calculate_euler_angles(_dcm_matrix, NULL, NULL, &yaw);
yaw_sensor = yaw * DEGX100; //degrees(yaw) * 100;
if (yaw_sensor < 0)
yaw_sensor += 36000;
}
/* reporting of DCM state for MAVLink */
// average accel_weight since last call
float AP_DCM::get_accel_weight(void)
{
float ret;
if (_accel_weight_count == 0) {
return 0;
}
ret = _accel_weight_sum / _accel_weight_count;
_accel_weight_sum = 0;
_accel_weight_count = 0;
return ret;
}
// average renorm_val since last call
float AP_DCM::get_renorm_val(void)
{
float ret;
if (_renorm_val_count == 0) {
return 0;
}
ret = _renorm_val_sum / _renorm_val_count;
_renorm_val_sum = 0;
_renorm_val_count = 0;
return ret;
}
// average error_roll_pitch since last call
float AP_DCM::get_error_rp(void)
{
float ret;
if (_error_rp_count == 0) {
return 0;
}
ret = _error_rp_sum / _error_rp_count;
_error_rp_sum = 0;
_error_rp_count = 0;
return ret;
}
// average error_yaw since last call
float AP_DCM::get_error_yaw(void)
{
float ret;
if (_error_yaw_count == 0) {
return 0;
}
ret = _error_yaw_sum / _error_yaw_count;
_error_yaw_sum = 0;
_error_yaw_count = 0;
return ret;
}