Ardupilot2/Rover/motor_test.cpp
2021-08-13 08:00:52 +10:00

181 lines
6.5 KiB
C++

#include "Rover.h"
/*
mavlink motor test - implements the MAV_CMD_DO_MOTOR_TEST mavlink command so that the GCS/pilot can test an individual motor or flaps
to ensure proper wiring, rotation.
*/
// motor test definitions
static const int16_t MOTOR_TEST_PWM_MAX = 2200; // max pwm value accepted by the test
static const int16_t MOTOR_TEST_TIMEOUT_MS_MAX = 30000; // max timeout is 30 seconds
static uint32_t motor_test_start_ms = 0; // system time the motor test began
static uint32_t motor_test_timeout_ms = 0; // test will timeout this many milliseconds after the motor_test_start_ms
static AP_MotorsUGV::motor_test_order motor_test_instance; // motor instance number of motor being tested (see AP_MotorsUGV::motor_test_order)
static uint8_t motor_test_throttle_type = 0; // motor throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through)
static int16_t motor_test_throttle_value = 0; // throttle to be sent to motor, value depends upon it's type
// motor_test_output - checks for timeout and sends updates to motors objects
void Rover::motor_test_output()
{
// exit immediately if the motor test is not running
if (!motor_test) {
return;
}
// check for test timeout
if ((AP_HAL::millis() - motor_test_start_ms) >= motor_test_timeout_ms) {
// stop motor test
motor_test_stop();
} else {
bool test_result = false;
// calculate based on throttle type
switch (motor_test_throttle_type) {
case MOTOR_TEST_THROTTLE_PERCENT:
test_result = g2.motors.output_test_pct(motor_test_instance, motor_test_throttle_value);
break;
case MOTOR_TEST_THROTTLE_PWM:
test_result = g2.motors.output_test_pwm(motor_test_instance, motor_test_throttle_value);
break;
case MOTOR_TEST_THROTTLE_PILOT:
if (motor_test_instance == AP_MotorsUGV::MOTOR_TEST_STEERING) {
test_result = g2.motors.output_test_pct(motor_test_instance, channel_steer->norm_input_dz() * 100.0f);
} else {
test_result = g2.motors.output_test_pct(motor_test_instance, channel_throttle->get_control_in());
}
break;
default:
// do nothing
return;
}
// stop motor test on failure
if (!test_result) {
motor_test_stop();
}
}
}
// mavlink_motor_test_check - perform checks before motor tests can begin
// return true if tests can continue, false if not
bool Rover::mavlink_motor_test_check(const GCS_MAVLINK &gcs_chan, bool check_rc, AP_MotorsUGV::motor_test_order motor_seq, uint8_t throttle_type, int16_t throttle_value)
{
// check board has initialised
if (!initialised) {
gcs_chan.send_text(MAV_SEVERITY_CRITICAL, "Motor Test: Board initialising");
return false;
}
// check rc has been calibrated
if (check_rc && !arming.rc_calibration_checks(true)) {
gcs_chan.send_text(MAV_SEVERITY_CRITICAL, "Motor Test: RC not calibrated");
return false;
}
// check if safety switch has been pushed
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
gcs_chan.send_text(MAV_SEVERITY_CRITICAL, "Motor Test: Safety switch");
return false;
}
// check motor_seq
if (motor_seq > AP_MotorsUGV::MOTOR_TEST_THROTTLE_RIGHT) {
gcs_chan.send_text(MAV_SEVERITY_CRITICAL, "Motor Test: invalid motor (%d)", (int)motor_seq);
return false;
}
// check throttle type
if (throttle_type > MOTOR_TEST_THROTTLE_PILOT) {
gcs_chan.send_text(MAV_SEVERITY_CRITICAL, "Motor Test: invalid throttle type: %d", (int)throttle_type);
return false;
}
// check throttle value
if (throttle_type == MOTOR_TEST_THROTTLE_PWM && throttle_value > MOTOR_TEST_PWM_MAX) {
gcs_chan.send_text(MAV_SEVERITY_CRITICAL, "Motor Test: pwm (%d) too high", (int)throttle_value);
return false;
}
if (throttle_type == MOTOR_TEST_THROTTLE_PERCENT && throttle_value > 100) {
gcs_chan.send_text(MAV_SEVERITY_CRITICAL, "Motor Test: percentage (%d) too high", (int)throttle_value);
return false;
}
// if we got this far the check was successful and the motor test can continue
return true;
}
// mavlink_motor_test_start - start motor test - spin a single motor at a specified pwm
// returns MAV_RESULT_ACCEPTED on success, MAV_RESULT_FAILED on failure
MAV_RESULT Rover::mavlink_motor_test_start(const GCS_MAVLINK &gcs_chan, AP_MotorsUGV::motor_test_order motor_instance, uint8_t throttle_type, int16_t throttle_value, float timeout_sec)
{
// if test has not started try to start it
if (!motor_test) {
/* perform checks that it is ok to start test
The RC calibrated check can be skipped if direct pwm is
suppliedo
*/
if (!mavlink_motor_test_check(gcs_chan, throttle_type != 1, motor_instance, throttle_type, throttle_value)) {
return MAV_RESULT_FAILED;
} else {
// start test
motor_test = true;
// arm motors
if (!arming.is_armed()) {
if (!arming.arm(AP_Arming::Method::MOTORTEST)) {
return MAV_RESULT_FAILED;
}
}
// disable failsafes
g.fs_gcs_enabled = 0;
g.fs_throttle_enabled = 0;
g.fs_crash_check = 0;
// turn on notify leds
AP_Notify::flags.esc_calibration = true;
}
}
// set timeout
motor_test_start_ms = AP_HAL::millis();
motor_test_timeout_ms = MIN(timeout_sec * 1000, MOTOR_TEST_TIMEOUT_MS_MAX);
// store required output
motor_test_instance = motor_instance;
motor_test_throttle_type = throttle_type;
motor_test_throttle_value = throttle_value;
// return success
return MAV_RESULT_ACCEPTED;
}
// motor_test_stop - stops the motor test
void Rover::motor_test_stop()
{
// exit immediately if the test is not running
if (!motor_test) {
return;
}
// disarm motors
AP::arming().disarm(AP_Arming::Method::MOTORTEST);
// reset timeout
motor_test_start_ms = 0;
motor_test_timeout_ms = 0;
// re-enable failsafes
g.fs_gcs_enabled.load();
g.fs_throttle_enabled.load();
g.fs_crash_check.load();
// turn off notify leds
AP_Notify::flags.esc_calibration = false;
// flag test is complete
motor_test = false;
}