Ardupilot2/libraries/AP_Frsky_Telem/AP_Frsky_SPort_Passthrough.cpp
2024-05-22 17:15:04 +10:00

973 lines
36 KiB
C++

#include "AP_Frsky_SPort_Passthrough.h"
#if AP_FRSKY_SPORT_PASSTHROUGH_ENABLED
#include <AP_AHRS/AP_AHRS.h>
#include <AP_BattMonitor/AP_BattMonitor.h>
#include <AP_GPS/AP_GPS.h>
#include <AP_HAL/utility/RingBuffer.h>
#include <AP_InertialSensor/AP_InertialSensor.h>
#include <AP_Notify/AP_Notify.h>
#include <AP_RangeFinder/AP_RangeFinder.h>
#include <AP_RPM/AP_RPM.h>
#include <AP_Terrain/AP_Terrain.h>
#include <AC_Fence/AC_Fence.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <GCS_MAVLink/GCS.h>
#if APM_BUILD_TYPE(APM_BUILD_Rover)
#include <AP_WindVane/AP_WindVane.h>
#endif
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
#include "AP_Frsky_MAVlite.h"
#include "AP_Frsky_Parameters.h"
#endif //HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
/*
for FrSky SPort Passthrough
*/
// data bits preparation
// for parameter data
#define PARAM_ID_OFFSET 24
#define PARAM_VALUE_LIMIT 0xFFFFFF
// for gps status data
#define GPS_SATS_LIMIT 0xF
#define GPS_STATUS_LIMIT 0x3
#define GPS_STATUS_OFFSET 4
#define GPS_HDOP_OFFSET 6
#define GPS_ADVSTATUS_OFFSET 14
#define GPS_ALTMSL_OFFSET 22
// for battery data
#define BATT_VOLTAGE_LIMIT 0x1FF
#define BATT_CURRENT_OFFSET 9
#define BATT_TOTALMAH_LIMIT 0x7FFF
#define BATT_TOTALMAH_OFFSET 17
// for autopilot status data
#define AP_CONTROL_MODE_LIMIT 0x1F
#define AP_SIMPLE_OFFSET 5
#define AP_SSIMPLE_OFFSET 6
#define AP_FLYING_OFFSET 7
#define AP_ARMED_OFFSET 8
#define AP_BATT_FS_OFFSET 9
#define AP_EKF_FS_OFFSET 10
#define AP_FS_OFFSET 12
#define AP_FENCE_PRESENT_OFFSET 13
#define AP_FENCE_BREACH_OFFSET 14
#define AP_THROTTLE_OFFSET 19
#define AP_IMU_TEMP_MIN 19.0f
#define AP_IMU_TEMP_MAX 82.0f
#define AP_IMU_TEMP_OFFSET 26
// for home position related data
#define HOME_ALT_OFFSET 12
#define HOME_BEARING_LIMIT 0x7F
#define HOME_BEARING_OFFSET 25
// for velocity and yaw data
#define VELANDYAW_XYVEL_OFFSET 9
#define VELANDYAW_YAW_LIMIT 0x7FF
#define VELANDYAW_YAW_OFFSET 17
#define VELANDYAW_ARSPD_OFFSET 28
// for attitude (roll, pitch) and range data
#define ATTIANDRNG_ROLL_LIMIT 0x7FF
#define ATTIANDRNG_PITCH_LIMIT 0x3FF
#define ATTIANDRNG_PITCH_OFFSET 11
#define ATTIANDRNG_RNGFND_OFFSET 21
// for terrain data
#define TERRAIN_UNHEALTHY_OFFSET 13
// for wind data
#define WIND_ANGLE_LIMIT 0x7F
#define WIND_SPEED_OFFSET 7
#define WIND_APPARENT_ANGLE_OFFSET 15
#define WIND_APPARENT_SPEED_OFFSET 23
// for waypoint data
#define WP_NUMBER_LIMIT 2047
#define WP_DISTANCE_LIMIT 1023000
#define WP_DISTANCE_OFFSET 11
#define WP_BEARING_OFFSET 23
extern const AP_HAL::HAL& hal;
AP_Frsky_SPort_Passthrough *AP_Frsky_SPort_Passthrough::singleton;
bool AP_Frsky_SPort_Passthrough::init()
{
if (!AP_RCTelemetry::init()) {
return false;
}
return AP_Frsky_SPort::init();
}
bool AP_Frsky_SPort_Passthrough::init_serial_port()
{
if (_use_external_data) {
return true;
}
return AP_Frsky_SPort::init_serial_port();
}
void AP_Frsky_SPort_Passthrough::send_sport_frame(uint8_t frame, uint16_t appid, uint32_t data)
{
if (_use_external_data) {
external_data.packet.frame = frame;
external_data.packet.appid = appid;
external_data.packet.data = data;
external_data.pending = true;
return;
}
return AP_Frsky_SPort::send_sport_frame(frame, appid, data);
}
/*
setup ready for passthrough telem
*/
void AP_Frsky_SPort_Passthrough::setup_wfq_scheduler(void)
{
// initialize packet weights for the WFQ scheduler
// priority[i] = 1/_scheduler.packet_weight[i]
// rate[i] = LinkRate * ( priority[i] / (sum(priority[1-n])) )
set_scheduler_entry(TEXT, 35, 28); // 0x5000 status text (dynamic)
set_scheduler_entry(ATTITUDE, 50, 38); // 0x5006 Attitude and range (dynamic)
set_scheduler_entry(GPS_LAT, 550, 280); // 0x800 GPS lat
set_scheduler_entry(GPS_LON, 550, 280); // 0x800 GPS lon
set_scheduler_entry(VEL_YAW, 400, 250); // 0x5005 Vel and Yaw
set_scheduler_entry(AP_STATUS, 700, 500); // 0x5001 AP status
set_scheduler_entry(GPS_STATUS, 700, 500); // 0x5002 GPS status
set_scheduler_entry(HOME, 400, 500); // 0x5004 Home
set_scheduler_entry(BATT_2, 1300, 500); // 0x5008 Battery 2 status
set_scheduler_entry(BATT_1, 1300, 500); // 0x5003 Battery 1 status
set_scheduler_entry(PARAM, 1700, 1000); // 0x5007 parameters
set_scheduler_entry(RPM, 300, 330); // 0x500A rpm sensors 1 and 2
set_scheduler_entry(TERRAIN, 700, 500); // 0x500B terrain data
set_scheduler_entry(WIND, 700, 500); // 0x500C wind data
set_scheduler_entry(WAYPOINT, 750, 500); // 0x500D waypoint data
set_scheduler_entry(UDATA, 5000, 200); // user data
// initialize default sport sensor ID
set_sensor_id(_frsky_parameters->_dnlink_id, downlink_sensor_id);
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
set_scheduler_entry(MAV, 35, 25); // mavlite
// initialize sport sensor IDs
set_sensor_id(_frsky_parameters->_uplink_id, _SPort_bidir.uplink_sensor_id);
set_sensor_id(_frsky_parameters->_dnlink1_id, _SPort_bidir.downlink1_sensor_id);
set_sensor_id(_frsky_parameters->_dnlink2_id, _SPort_bidir.downlink2_sensor_id);
// initialize sport
hal.scheduler->register_io_process(FUNCTOR_BIND_MEMBER(&AP_Frsky_SPort_Passthrough::process_rx_queue, void));
#endif //HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
}
/*
dynamically change scheduler priorities based on queue sizes
*/
void AP_Frsky_SPort_Passthrough::adjust_packet_weight(bool queue_empty)
{
/*
When queues are empty set a low priority (high weight), when queues
are not empty set a higher priority (low weight) based on the following
relative priority order: mavlite > status text > attitude.
*/
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
if (!_SPort_bidir.tx_packet_queue.is_empty()) {
_scheduler.packet_weight[MAV] = 30; // mavlite
if (!queue_empty) {
_scheduler.packet_weight[TEXT] = 45; // messages
_scheduler.packet_weight[ATTITUDE] = 80; // attitude
} else {
_scheduler.packet_weight[TEXT] = 5000; // messages
_scheduler.packet_weight[ATTITUDE] = 80; // attitude
}
} else {
_scheduler.packet_weight[MAV] = 5000; // mavlite
if (!queue_empty) {
_scheduler.packet_weight[TEXT] = 45; // messages
_scheduler.packet_weight[ATTITUDE] = 80; // attitude
} else {
_scheduler.packet_weight[TEXT] = 5000; // messages
_scheduler.packet_weight[ATTITUDE] = 45; // attitude
}
}
#else //HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
if (!queue_empty) {
_scheduler.packet_weight[TEXT] = 45; // messages
_scheduler.packet_weight[ATTITUDE] = 80; // attitude
} else {
_scheduler.packet_weight[TEXT] = 5000; // messages
_scheduler.packet_weight[ATTITUDE] = 45; // attitude
}
#endif //HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
// when using fport raise user data priority if any packets are pending
if (_use_external_data && _sport_push_buffer.pending) {
_scheduler.packet_weight[UDATA] = 250;
} else {
_scheduler.packet_weight[UDATA] = 5000; // user data
}
}
// WFQ scheduler
bool AP_Frsky_SPort_Passthrough::is_packet_ready(uint8_t idx, bool queue_empty)
{
bool packet_ready = false;
switch (idx) {
case TEXT:
packet_ready = !queue_empty;
break;
case GPS_LAT:
case GPS_LON:
// force gps coords to use default sensor ID, always send when used with external data
packet_ready = _use_external_data || (_passthrough.new_byte == downlink_sensor_id);
break;
case AP_STATUS:
packet_ready = gcs().vehicle_initialised();
break;
case BATT_2:
packet_ready = AP::battery().num_instances() > 1;
break;
case RPM:
{
packet_ready = false;
#if AP_RPM_ENABLED
const AP_RPM *rpm = AP::rpm();
if (rpm == nullptr) {
break;
}
packet_ready = rpm->num_sensors() > 0;
#endif
}
break;
case TERRAIN:
{
packet_ready = false;
#if AP_TERRAIN_AVAILABLE
const AP_Terrain *terrain = AP::terrain();
packet_ready = terrain && terrain->enabled();
#endif
}
break;
case WIND:
#if !APM_BUILD_TYPE(APM_BUILD_Rover)
{
float a;
WITH_SEMAPHORE(AP::ahrs().get_semaphore());
if (AP::ahrs().airspeed_estimate_true(a)) {
// if we have an airspeed estimate then we have a valid wind estimate
packet_ready = true;
}
}
#else
{
const AP_WindVane* windvane = AP_WindVane::get_singleton();
packet_ready = windvane != nullptr && windvane->enabled();
}
#endif
break;
case WAYPOINT:
{
const AP_Mission *mission = AP::mission();
packet_ready = mission != nullptr && mission->get_current_nav_index() > 0;
}
break;
case UDATA:
// when using fport user data is sent by scheduler
// when using sport user data is sent responding to custom polling
packet_ready = _use_external_data && _sport_push_buffer.pending;
break;
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
case MAV:
packet_ready = !_SPort_bidir.tx_packet_queue.is_empty();
break;
#endif //HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
default:
packet_ready = true;
break;
}
return packet_ready;
}
/*
* WFQ scheduler
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
void AP_Frsky_SPort_Passthrough::process_packet(uint8_t idx)
{
// send packet
switch (idx) {
case TEXT: // 0x5000 status text
if (get_next_msg_chunk()) {
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID, _msg_chunk.chunk);
}
break;
case ATTITUDE: // 0x5006 Attitude and range
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+6, calc_attiandrng());
break;
case GPS_LAT: // 0x800 GPS lat
// sample both lat and lon at the same time
send_sport_frame(SPORT_DATA_FRAME, GPS_LONG_LATI_FIRST_ID, calc_gps_latlng(_passthrough.send_latitude)); // gps latitude or longitude
_passthrough.gps_lng_sample = calc_gps_latlng(_passthrough.send_latitude);
// force the scheduler to select GPS lon as packet that's been waiting the most
// this guarantees that lat and lon are sent as consecutive packets
_scheduler.packet_timer[GPS_LON] = _scheduler.packet_timer[GPS_LAT] - 10000;
break;
case GPS_LON: // 0x800 GPS lon
send_sport_frame(SPORT_DATA_FRAME, GPS_LONG_LATI_FIRST_ID, _passthrough.gps_lng_sample); // gps longitude
break;
case VEL_YAW: // 0x5005 Vel and Yaw
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+5, calc_velandyaw());
break;
case AP_STATUS: // 0x5001 AP status
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+1, calc_ap_status());
break;
case GPS_STATUS: // 0x5002 GPS Status
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+2, calc_gps_status());
break;
case HOME: // 0x5004 Home
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+4, calc_home());
break;
case BATT_2: // 0x5008 Battery 2 status
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+8, calc_batt(1));
break;
case BATT_1: // 0x5003 Battery 1 status
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+3, calc_batt(0));
break;
case PARAM: // 0x5007 parameters
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+7, calc_param());
break;
case RPM: // 0x500A rpm sensors 1 and 2
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+0x0A, calc_rpm());
break;
case TERRAIN: // 0x500B terrain data
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+0x0B, calc_terrain());
break;
case WIND: // 0x500C terrain data
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+0x0C, calc_wind());
break;
case WAYPOINT: // 0x500D waypoint data
send_sport_frame(SPORT_DATA_FRAME, DIY_FIRST_ID+0x0D, calc_waypoint());
break;
case UDATA: // user data
{
WITH_SEMAPHORE(_sport_push_buffer.sem);
if (_use_external_data && _sport_push_buffer.pending) {
send_sport_frame(_sport_push_buffer.packet.frame, _sport_push_buffer.packet.appid, _sport_push_buffer.packet.data);
_sport_push_buffer.pending = false;
}
}
break;
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
case MAV: // mavlite
process_tx_queue();
break;
#endif //HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
}
}
/*
* send telemetry data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
void AP_Frsky_SPort_Passthrough::send(void)
{
const uint16_t numc = MIN(_port->available(), 1024U);
// this is the constant for hub data frame
if (_port->txspace() < 19) {
return;
}
// keep only the last two bytes of the data found in the serial buffer, as we shouldn't respond to old poll requests
uint8_t prev_byte = 0;
for (uint16_t i = 0; i < numc; i++) {
prev_byte = _passthrough.new_byte;
_passthrough.new_byte = _port->read();
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
AP_Frsky_SPort::sport_packet_t sp;
if (_sport_handler.process_byte(sp, _passthrough.new_byte)) {
queue_rx_packet(sp);
}
#endif //HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
}
// check if we should respond to this polling byte
if (prev_byte == FRAME_HEAD) {
if (is_passthrough_byte(_passthrough.new_byte)) {
run_wfq_scheduler();
} else {
// respond to custom user data polling
WITH_SEMAPHORE(_sport_push_buffer.sem);
if (_sport_push_buffer.pending && _passthrough.new_byte == _sport_push_buffer.packet.sensor) {
send_sport_frame(_sport_push_buffer.packet.frame, _sport_push_buffer.packet.appid, _sport_push_buffer.packet.data);
_sport_push_buffer.pending = false;
}
}
}
}
/*
* grabs one "chunk" (4 bytes) of the queued message to be transmitted
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
bool AP_Frsky_SPort_Passthrough::get_next_msg_chunk(void)
{
if (!_statustext.available) {
WITH_SEMAPHORE(_statustext.sem);
if (!_statustext.queue.pop(_statustext.next)) {
return false;
}
_statustext.available = true;
}
if (_msg_chunk.repeats == 0) { // if it's the first time get_next_msg_chunk is called for a given chunk
uint8_t character = 0;
_msg_chunk.chunk = 0; // clear the 4 bytes of the chunk buffer
for (uint8_t i = 0; i < 4 && _msg_chunk.char_index < sizeof(_statustext.next.text); i++) {
character = _statustext.next.text[_msg_chunk.char_index++];
if (!character) {
break;
}
_msg_chunk.chunk |= character << (3-i) * 8;
}
if (!character || (_msg_chunk.char_index == sizeof(_statustext.next.text))) { // we've reached the end of the message (string terminated by '\0' or last character of the string has been processed)
_msg_chunk.char_index = 0; // reset index to get ready to process the next message
// add severity which is sent as the MSB of the last three bytes of the last chunk (bits 24, 16, and 8) since a character is on 7 bits
_msg_chunk.chunk |= (_statustext.next.severity & 0x4)<<21;
_msg_chunk.chunk |= (_statustext.next.severity & 0x2)<<14;
_msg_chunk.chunk |= (_statustext.next.severity & 0x1)<<7;
}
}
// repeat each message chunk 3 times to ensure transmission
// on slow links reduce the number of duplicate chunks
uint8_t extra_chunks = 2;
if (_scheduler.avg_packet_rate < 20) {
// with 3 or more extra frsky sensors on the bus
// send messages only once
extra_chunks = 0;
} else if (_scheduler.avg_packet_rate < 30) {
// with 1 or 2 extra frsky sensors on the bus
// send messages twice
extra_chunks = 1;
}
if (_msg_chunk.repeats++ > extra_chunks ) {
_msg_chunk.repeats = 0;
if (_msg_chunk.char_index == 0) {
// we're ready for the next message
_statustext.available = false;
}
}
return true;
}
/*
* prepare parameter data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_SPort_Passthrough::calc_param(void)
{
uint8_t param_id = _paramID; //cache it because it gets changed inside the switch
uint32_t param_value = 0;
switch (_paramID) {
case NONE:
case FRAME_TYPE:
param_value = gcs().frame_type(); // see MAV_TYPE in Mavlink definition file common.h
_paramID = BATT_CAPACITY_1;
break;
case BATT_CAPACITY_1:
param_value = (uint32_t)roundf(AP::battery().pack_capacity_mah(0)); // battery pack capacity in mAh
_paramID = AP::battery().num_instances() > 1 ? BATT_CAPACITY_2 : TELEMETRY_FEATURES;
break;
case BATT_CAPACITY_2:
param_value = (uint32_t)roundf(AP::battery().pack_capacity_mah(1)); // battery pack capacity in mAh
_paramID = TELEMETRY_FEATURES;
break;
case TELEMETRY_FEATURES:
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
BIT_SET(param_value,PassthroughFeatures::BIDIR);
#endif
#if AP_SCRIPTING_ENABLED
BIT_SET(param_value,PassthroughFeatures::SCRIPTING);
#endif
_paramID = FRAME_TYPE;
break;
}
//Reserve first 8 bits for param ID, use other 24 bits to store parameter value
return (param_id << PARAM_ID_OFFSET) | (param_value & PARAM_VALUE_LIMIT);
}
/*
* prepare gps status data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_SPort_Passthrough::calc_gps_status(void)
{
const AP_GPS &gps = AP::gps();
// number of GPS satellites visible (limit to 15 (0xF) since the value is stored on 4 bits)
uint32_t gps_status = (gps.num_sats() < GPS_SATS_LIMIT) ? gps.num_sats() : GPS_SATS_LIMIT;
// GPS receiver status (limit to 0-3 (0x3) since the value is stored on 2 bits: NO_GPS = 0, NO_FIX = 1, GPS_OK_FIX_2D = 2, GPS_OK_FIX_3D or GPS_OK_FIX_3D_DGPS or GPS_OK_FIX_3D_RTK_FLOAT or GPS_OK_FIX_3D_RTK_FIXED = 3)
gps_status |= ((gps.status() < GPS_STATUS_LIMIT) ? gps.status() : GPS_STATUS_LIMIT)<<GPS_STATUS_OFFSET;
// GPS horizontal dilution of precision in dm
gps_status |= prep_number(roundf(gps.get_hdop() * 0.1f),2,1)<<GPS_HDOP_OFFSET;
// GPS receiver advanced status (0: no advanced fix, 1: GPS_OK_FIX_3D_DGPS, 2: GPS_OK_FIX_3D_RTK_FLOAT, 3: GPS_OK_FIX_3D_RTK_FIXED)
gps_status |= ((gps.status() > GPS_STATUS_LIMIT) ? gps.status()-GPS_STATUS_LIMIT : 0)<<GPS_ADVSTATUS_OFFSET;
// Altitude MSL in dm
const Location &loc = gps.location();
gps_status |= prep_number(roundf(loc.alt * 0.1f),2,2)<<GPS_ALTMSL_OFFSET;
return gps_status;
}
/*
* prepare battery data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_SPort_Passthrough::calc_batt(uint8_t instance)
{
const AP_BattMonitor &_battery = AP::battery();
float current, consumed_mah;
if (!_battery.current_amps(current, instance)) {
current = 0;
}
if (!_battery.consumed_mah(consumed_mah, instance)) {
consumed_mah = 0;
}
// battery voltage in decivolts, can have up to a 12S battery (4.25Vx12S = 51.0V)
uint32_t batt = (((uint16_t)roundf(_battery.voltage(instance) * 10.0f)) & BATT_VOLTAGE_LIMIT);
// battery current draw in deciamps
batt |= prep_number(roundf(current * 10.0f), 2, 1)<<BATT_CURRENT_OFFSET;
// battery current drawn since power on in mAh (limit to 32767 (0x7FFF) since value is stored on 15 bits)
batt |= ((consumed_mah < BATT_TOTALMAH_LIMIT) ? ((uint16_t)roundf(consumed_mah) & BATT_TOTALMAH_LIMIT) : BATT_TOTALMAH_LIMIT)<<BATT_TOTALMAH_OFFSET;
return batt;
}
/*
* true if we need to respond to the last polling byte
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
bool AP_Frsky_SPort_Passthrough::is_passthrough_byte(const uint8_t byte) const
{
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
if( byte == _SPort_bidir.downlink1_sensor_id || byte == _SPort_bidir.downlink2_sensor_id ) {
return true;
}
#endif
return byte == downlink_sensor_id;
}
/*
* prepare various autopilot status data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_SPort_Passthrough::calc_ap_status(void)
{
// IMU temperature: offset -19, 0 means temp =< 19°, 63 means temp => 82°
uint8_t imu_temp = 0;
#if AP_INERTIALSENSOR_ENABLED
imu_temp = (uint8_t) roundf(constrain_float(AP::ins().get_temperature(0), AP_IMU_TEMP_MIN, AP_IMU_TEMP_MAX) - AP_IMU_TEMP_MIN);
#endif
// control/flight mode number (limit to 31 (0x1F) since the value is stored on 5 bits)
uint32_t ap_status = (uint8_t)((gcs().custom_mode()+1) & AP_CONTROL_MODE_LIMIT);
// simple/super simple modes flags
ap_status |= (uint8_t)(gcs().simple_input_active())<<AP_SIMPLE_OFFSET;
ap_status |= (uint8_t)(gcs().supersimple_input_active())<<AP_SSIMPLE_OFFSET;
// is_flying flag
ap_status |= (uint8_t)(AP_Notify::flags.flying) << AP_FLYING_OFFSET;
// armed flag
ap_status |= (uint8_t)(AP_Notify::flags.armed)<<AP_ARMED_OFFSET;
// battery failsafe flag
ap_status |= (uint8_t)(AP_Notify::flags.failsafe_battery)<<AP_BATT_FS_OFFSET;
// bad ekf flag
ap_status |= (uint8_t)(AP_Notify::flags.ekf_bad)<<AP_EKF_FS_OFFSET;
// generic failsafe
ap_status |= (uint8_t)(AP_Notify::flags.failsafe_battery||AP_Notify::flags.failsafe_ekf||AP_Notify::flags.failsafe_gcs||AP_Notify::flags.failsafe_radio)<<AP_FS_OFFSET;
#if AP_FENCE_ENABLED
// fence status
AC_Fence *fence = AP::fence();
if (fence != nullptr) {
ap_status |= (uint8_t)(fence->enabled() && fence->present()) << AP_FENCE_PRESENT_OFFSET;
ap_status |= (uint8_t)(fence->get_breaches()>0) << AP_FENCE_BREACH_OFFSET;
}
#endif
// signed throttle [-100,100] scaled down to [-63,63] on 7 bits, MSB for sign + 6 bits for 0-63
ap_status |= prep_number(gcs().get_hud_throttle()*0.63, 2, 0)<<AP_THROTTLE_OFFSET;
// IMU temperature
ap_status |= imu_temp << AP_IMU_TEMP_OFFSET;
return ap_status;
}
/*
* prepare home position related data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_SPort_Passthrough::calc_home(void)
{
uint32_t home = 0;
Location loc;
Location home_loc;
bool got_position = false;
float _relative_home_altitude = 0;
{
AP_AHRS &_ahrs = AP::ahrs();
WITH_SEMAPHORE(_ahrs.get_semaphore());
got_position = _ahrs.get_location(loc);
home_loc = _ahrs.get_home();
}
if (got_position) {
// check home_loc is valid
if (home_loc.lat != 0 || home_loc.lng != 0) {
// distance between vehicle and home_loc in meters
home = prep_number(roundf(home_loc.get_distance(loc)), 3, 2);
// angle from front of vehicle to the direction of home_loc in 3 degree increments (just in case, limit to 127 (0x7F) since the value is stored on 7 bits)
home |= (((uint8_t)roundf(loc.get_bearing_to(home_loc) * 0.00333f)) & HOME_BEARING_LIMIT)<<HOME_BEARING_OFFSET;
}
// altitude between vehicle and home_loc
_relative_home_altitude = loc.alt;
if (!loc.relative_alt) {
// loc.alt has home altitude added, remove it
_relative_home_altitude -= home_loc.alt;
}
}
// altitude above home in decimeters
home |= prep_number(roundf(_relative_home_altitude * 0.1f), 3, 2)<<HOME_ALT_OFFSET;
return home;
}
/*
* prepare velocity and yaw data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_SPort_Passthrough::calc_velandyaw(void)
{
float vspd = AP_RCTelemetry::get_vspeed_ms();
// vertical velocity in dm/s
uint32_t velandyaw = prep_number(roundf(vspd * 10), 2, 1);
float airspeed_m; // m/s
float hspeed_m; // m/s
bool airspeed_estimate_true;
AP_AHRS &_ahrs = AP::ahrs();
{
WITH_SEMAPHORE(_ahrs.get_semaphore());
hspeed_m = _ahrs.groundspeed(); // default is to use groundspeed
airspeed_estimate_true = AP::ahrs().airspeed_estimate_true(airspeed_m);
}
bool option_airspeed_enabled = (_frsky_parameters->_options & frsky_options_e::OPTION_AIRSPEED_AND_GROUNDSPEED) != 0;
// airspeed estimate + airspeed option disabled (default) => send airspeed (we give priority to airspeed over groundspeed)
// airspeed estimate + airspeed option enabled => alternate airspeed/groundspeed, i.e send airspeed only when _passthrough.send_airspeed==true
if (airspeed_estimate_true && (!option_airspeed_enabled || _passthrough.send_airspeed)) {
hspeed_m = airspeed_m;
}
// horizontal velocity in dm/s
velandyaw |= prep_number(roundf(hspeed_m * 10), 2, 1)<<VELANDYAW_XYVEL_OFFSET;
// yaw from [0;36000] centidegrees to .2 degree increments [0;1800] (just in case, limit to 2047 (0x7FF) since the value is stored on 11 bits)
velandyaw |= ((uint16_t)roundf(_ahrs.yaw_sensor * 0.05f) & VELANDYAW_YAW_LIMIT)<<VELANDYAW_YAW_OFFSET;
// flag the airspeed bit if required
if (airspeed_estimate_true && option_airspeed_enabled && _passthrough.send_airspeed) {
velandyaw |= 1U<<VELANDYAW_ARSPD_OFFSET;
}
// toggle air/ground speed selector
_passthrough.send_airspeed = !_passthrough.send_airspeed;
return velandyaw;
}
/*
* prepare attitude (roll, pitch) and range data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_SPort_Passthrough::calc_attiandrng(void)
{
const RangeFinder *_rng = RangeFinder::get_singleton();
float roll;
float pitch;
AP::vehicle()->get_osd_roll_pitch_rad(roll,pitch);
// roll from [-18000;18000] centidegrees to unsigned .2 degree increments [0;1800] (just in case, limit to 2047 (0x7FF) since the value is stored on 11 bits)
uint32_t attiandrng = ((uint16_t)roundf((roll * RAD_TO_DEG * 100 + 18000) * 0.05f) & ATTIANDRNG_ROLL_LIMIT);
// pitch from [-9000;9000] centidegrees to unsigned .2 degree increments [0;900] (just in case, limit to 1023 (0x3FF) since the value is stored on 10 bits)
attiandrng |= ((uint16_t)roundf((pitch * RAD_TO_DEG * 100 + 9000) * 0.05f) & ATTIANDRNG_PITCH_LIMIT)<<ATTIANDRNG_PITCH_OFFSET;
// rangefinder measurement in cm
attiandrng |= prep_number(_rng ? _rng->distance_cm_orient(ROTATION_PITCH_270) : 0, 3, 1)<<ATTIANDRNG_RNGFND_OFFSET;
return attiandrng;
}
/*
* prepare rpm for sensors 1 and 2
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_SPort_Passthrough::calc_rpm(void)
{
#if AP_RPM_ENABLED
const AP_RPM *ap_rpm = AP::rpm();
if (ap_rpm == nullptr) {
return 0;
}
uint32_t value = 0;
// we send: rpm_value*0.1 as 16 bits signed
float rpm;
// bits 0-15 for rpm 0
if (ap_rpm->get_rpm(0,rpm)) {
value |= (int16_t)roundf(rpm * 0.1);
}
// bits 16-31 for rpm 1
if (ap_rpm->get_rpm(1,rpm)) {
value |= (int16_t)roundf(rpm * 0.1) << 16;
}
return value;
#else
return 0;
#endif
}
/*
* prepare terrain data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_SPort_Passthrough::calc_terrain(void)
{
uint32_t value = 0;
#if AP_TERRAIN_AVAILABLE
AP_Terrain *terrain = AP::terrain();
if (terrain == nullptr || !terrain->enabled()) {
return value;
}
float height_above_terrain;
if (terrain->height_above_terrain(height_above_terrain, true)) {
// vehicle height above terrain
value |= prep_number(roundf(height_above_terrain * 10), 3, 2);
}
// terrain unhealthy flag
value |= (uint8_t)(terrain->status() == AP_Terrain::TerrainStatus::TerrainStatusUnhealthy) << TERRAIN_UNHEALTHY_OFFSET;
#endif
return value;
}
/*
* prepare wind data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
* wind direction = 0 means North
*/
uint32_t AP_Frsky_SPort_Passthrough::calc_wind(void)
{
#if !APM_BUILD_TYPE(APM_BUILD_Rover)
Vector3f v;
{
AP_AHRS &ahrs = AP::ahrs();
WITH_SEMAPHORE(ahrs.get_semaphore());
v = ahrs.wind_estimate();
}
// wind angle in 3 degree increments 0,360 (unsigned)
uint32_t value = prep_number(roundf(wrap_360(degrees(atan2f(-v.y, -v.x))) * (1.0f/3.0f)), 2, 0);
// wind speed in dm/s
value |= prep_number(roundf(v.length() * 10), 2, 1) << WIND_SPEED_OFFSET;
#else
const AP_WindVane* windvane = AP_WindVane::get_singleton();
uint32_t value = 0;
if (windvane != nullptr && windvane->enabled()) {
// true wind angle in 3 degree increments 0,360 (unsigned)
value = prep_number(roundf(wrap_360(degrees(windvane->get_true_wind_direction_rad())) * (1.0f/3.0f)), 2, 0);
// true wind speed in dm/s
value |= prep_number(roundf(windvane->get_true_wind_speed() * 10), 2, 1) << WIND_SPEED_OFFSET;
// apparent wind angle in 3 degree increments -180,180 (signed)
value |= prep_number(roundf(degrees(windvane->get_apparent_wind_direction_rad()) * (1.0f/3.0f)), 2, 0);
// apparent wind speed in dm/s
value |= prep_number(roundf(windvane->get_apparent_wind_speed() * 10), 2, 1) << WIND_APPARENT_SPEED_OFFSET;
}
#endif
return value;
}
/*
* prepare waypoint data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_SPort_Passthrough::calc_waypoint(void)
{
const AP_Mission *mission = AP::mission();
const AP_Vehicle *vehicle = AP::vehicle();
if (mission == nullptr || vehicle == nullptr) {
return 0U;
}
float wp_distance;
if (!vehicle->get_wp_distance_m(wp_distance)) {
return 0U;
}
float angle;
if (!vehicle->get_wp_bearing_deg(angle)) {
return 0U;
}
// waypoint current nav index
uint32_t value = MIN(mission->get_current_nav_index(), WP_NUMBER_LIMIT);
// distance to next waypoint
value |= prep_number(wp_distance, 3, 2) << WP_DISTANCE_OFFSET;
// bearing encoded in 3 degrees increments
value |= ((uint8_t)roundf(wrap_360(angle) * 0.333f)) << WP_BEARING_OFFSET;
return value;
}
/*
fetch Sport data for an external transport, such as FPort or crossfire
Note: we need to create a packet array with unique packet types
For very big frames we might have to relax the "unique packet type per frame"
constraint in order to maximize bandwidth usage
*/
bool AP_Frsky_SPort_Passthrough::get_telem_data(sport_packet_t* packet_array, uint8_t &packet_count, const uint8_t max_size)
{
if (!_use_external_data) {
return false;
}
uint8_t idx = 0;
// max_size >= WFQ_LAST_ITEM
// get a packet per enabled type
if (max_size >= WFQ_LAST_ITEM) {
for (uint8_t i=0; i<WFQ_LAST_ITEM; i++) {
if (process_scheduler_entry(i)) {
if (external_data.pending) {
packet_array[idx].frame = external_data.packet.frame;
packet_array[idx].appid = external_data.packet.appid;
packet_array[idx].data = external_data.packet.data;
idx++;
external_data.pending = false;
}
}
}
} else {
// max_size < WFQ_LAST_ITEM
// call run_wfq_scheduler(false) enough times to create a packet of up to max_size unique elements
uint32_t item_mask = 0;
for (uint8_t i=0; i<max_size; i++) {
// call the scheduler with the shaper "disabled"
const uint8_t item = run_wfq_scheduler(false);
if (!BIT_IS_SET(item_mask, item) && external_data.pending) {
// ok got some data, flip the bitmask bit to prevent adding the same packet type more than once
BIT_SET(item_mask, item);
packet_array[idx].frame = external_data.packet.frame;
packet_array[idx].appid = external_data.packet.appid;
packet_array[idx].data = external_data.packet.data;
idx++;
external_data.pending = false;
}
}
}
packet_count = idx;
return idx > 0;
}
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
/*
allow external transports (e.g. FPort), to supply telemetry data
*/
bool AP_Frsky_SPort_Passthrough::set_telem_data(const uint8_t frame, const uint16_t appid, const uint32_t data)
{
// queue only Uplink packets
if (frame == SPORT_UPLINK_FRAME || frame == SPORT_UPLINK_FRAME_RW) {
const AP_Frsky_SPort::sport_packet_t sp {
{ 0x00, // this is ignored by process_sport_rx_queue() so no need for a real sensor ID
frame,
appid,
data }
};
_SPort_bidir.rx_packet_queue.push_force(sp);
return true;
}
return false;
}
/*
* Queue uplink packets in the sport rx queue
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
void AP_Frsky_SPort_Passthrough::queue_rx_packet(const AP_Frsky_SPort::sport_packet_t packet)
{
// queue only Uplink packets
if (packet.sensor == _SPort_bidir.uplink_sensor_id && packet.frame == SPORT_UPLINK_FRAME) {
_SPort_bidir.rx_packet_queue.push_force(packet);
}
}
/*
* Extract up to 1 mavlite message from the sport rx packet queue
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
void AP_Frsky_SPort_Passthrough::process_rx_queue()
{
AP_Frsky_SPort::sport_packet_t packet;
uint8_t loop_count = 0; // prevent looping forever
while (_SPort_bidir.rx_packet_queue.pop(packet) && loop_count++ < MAVLITE_MSG_SPORT_PACKETS_COUNT(MAVLITE_MAX_PAYLOAD_LEN)) {
AP_Frsky_MAVlite_Message rxmsg;
if (sport_to_mavlite.process(rxmsg, packet)) {
mavlite.process_message(rxmsg);
break; // process only 1 mavlite message each call
}
}
}
/*
* Process the sport tx queue
* pop and send 1 sport packet
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
void AP_Frsky_SPort_Passthrough::process_tx_queue()
{
AP_Frsky_SPort::sport_packet_t packet;
if (!_SPort_bidir.tx_packet_queue.peek(packet)) {
return;
}
// when using fport repeat each packet to account for
// fport packet loss (around 15%)
if (!_use_external_data || _SPort_bidir.tx_packet_duplicates++ == SPORT_TX_PACKET_DUPLICATES) {
_SPort_bidir.tx_packet_queue.pop();
_SPort_bidir.tx_packet_duplicates = 0;
}
send_sport_frame(SPORT_DOWNLINK_FRAME, packet.appid, packet.data);
}
/*
* Utility method to apply constraints in changing sensor id values
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
void AP_Frsky_SPort_Passthrough::set_sensor_id(AP_Int8 param_idx, uint8_t &sensor)
{
int8_t idx = param_idx.get();
if (idx == -1) {
// disable this sensor
sensor = 0xFF;
return;
}
sensor = calc_sensor_id(idx);
}
/*
* Send a mavlite message
* Message is chunked in sport packets pushed in the tx queue
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
bool AP_Frsky_SPort_Passthrough::send_message(const AP_Frsky_MAVlite_Message &txmsg)
{
return mavlite_to_sport.process(_SPort_bidir.tx_packet_queue, txmsg);
}
#endif //HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
namespace AP
{
AP_Frsky_SPort_Passthrough *frsky_passthrough_telem()
{
return AP_Frsky_SPort_Passthrough::get_singleton();
}
};
#endif // AP_FRSKY_SPORT_PASSTHROUGH_ENABLED