Ardupilot2/libraries/AP_Scripting/lua_boxed_numerics.cpp
Michael du Breuil 84c2b18e43 AP_Scripting: Support enum types, add millis() remove manual GCS wrapper
This introduces enum types for range checking/returns, adds a millis(() call
(this returns a uint32_t), and moves over to an auto generated version of the GCS binding
2019-05-11 18:25:43 -07:00

198 lines
5.6 KiB
C++

#include <AP_HAL/AP_HAL.h>
#include "lua_boxed_numerics.h"
extern const AP_HAL::HAL& hal;
int new_uint32_t(lua_State *L) {
luaL_checkstack(L, 2, "Out of stack");
*static_cast<uint32_t *>(lua_newuserdata(L, sizeof(uint32_t))) = 0; // allocated memory is already zerod, no need to manipulate this
luaL_getmetatable(L, "uint32_t");
lua_setmetatable(L, -2);
return 1;
}
uint32_t * check_uint32_t(lua_State *L, int arg) {
void *data = luaL_checkudata(L, arg, "uint32_t");
return static_cast<uint32_t *>(data);
}
uint32_t coerce_to_uint32_t(lua_State *L, int arg) {
{ // userdata
const uint32_t * ud = static_cast<uint32_t *>(luaL_testudata(L, arg, "uint32_t"));
if (ud != nullptr) {
return *ud;
}
}
{ // integer
// if this assert fails, you will need to add an upper bounds
// check that ensures the value isn't greater then UINT32_MAX
static_assert(sizeof(lua_Number) == sizeof(uint32_t), "32 bit integers are only supported");
int success;
const lua_Integer v = lua_tointegerx(L, arg, &success);
if (success && v >= 0) {
return static_cast<uint32_t>(v);
}
}
{ // float
int success;
const lua_Number v = lua_tonumberx(L, arg, &success);
if (success && v >= 0 && v <= UINT32_MAX) {
return static_cast<uint32_t>(v);
}
}
// failure
return luaL_argerror(L, arg, "Unable to coerce to uint32_t");
}
#define UINT32_T_BOX_OP(name, sym) \
static int uint32_t___##name(lua_State *L) { \
const int args = lua_gettop(L); \
if (args > 2) { \
return luaL_argerror(L, args, "too many arguments"); \
} else if (args < 2) { \
return luaL_argerror(L, args, "too few arguments"); \
} \
\
uint32_t v1 = coerce_to_uint32_t(L, 1); \
uint32_t v2 = coerce_to_uint32_t(L, 2); \
\
new_uint32_t(L); \
*static_cast<uint32_t *>(luaL_checkudata(L, -1, "uint32_t")) = v1 sym v2; \
return 1; \
}
UINT32_T_BOX_OP(add, +)
UINT32_T_BOX_OP(sub, -)
UINT32_T_BOX_OP(mul, *)
UINT32_T_BOX_OP(div, /)
UINT32_T_BOX_OP(mod, %)
UINT32_T_BOX_OP(idiv, /)
UINT32_T_BOX_OP(band, &)
UINT32_T_BOX_OP(bor, |)
UINT32_T_BOX_OP(bxor, ^)
UINT32_T_BOX_OP(shl, <<)
UINT32_T_BOX_OP(shr, >>)
#define UINT32_T_BOX_OP_BOOL(name, sym) \
static int uint32_t___##name(lua_State *L) { \
const int args = lua_gettop(L); \
luaL_checkstack(L, 1, "Out of stack"); \
if (args > 2) { \
return luaL_argerror(L, args, "too many arguments"); \
} else if (args < 2) { \
return luaL_argerror(L, args, "too few arguments"); \
} \
\
uint32_t v1 = coerce_to_uint32_t(L, 1); \
uint32_t v2 = coerce_to_uint32_t(L, 2); \
\
lua_pushboolean(L, v1 sym v2); \
return 1; \
}
UINT32_T_BOX_OP_BOOL(eq, =)
UINT32_T_BOX_OP_BOOL(lt, <)
UINT32_T_BOX_OP_BOOL(le, <=)
#define UINT32_T_BOX_OP_UNARY(name, sym) \
static int uint32_t___##name(lua_State *L) { \
const int args = lua_gettop(L); \
luaL_checkstack(L, 1, "Out of stack"); \
if (args != 1) { \
return luaL_argerror(L, args, "Expected 1 argument"); \
} \
\
uint32_t v1 = coerce_to_uint32_t(L, 1); \
\
new_uint32_t(L); \
*static_cast<uint32_t *>(luaL_checkudata(L, -1, "uint32_t")) = sym v1; \
return 1; \
}
// DO NOT SUPPORT UNARY NEGATION
UINT32_T_BOX_OP_UNARY(bnot, ~)
static int uint32_t_toint(lua_State *L) {
const int args = lua_gettop(L);
if (args != 1) {
return luaL_argerror(L, args, "Expected 1 argument");
}
uint32_t v = *static_cast<uint32_t *>(luaL_checkudata(L, 1, "uint32_t"));
lua_pushinteger(L, static_cast<lua_Integer>(v));
return 1;
}
static int uint32_t_tofloat(lua_State *L) {
const int args = lua_gettop(L);
if (args != 1) {
return luaL_argerror(L, args, "Expected 1 argument");
}
uint32_t v = *static_cast<uint32_t *>(luaL_checkudata(L, 1, "uint32_t"));
lua_pushnumber(L, static_cast<lua_Number>(v));
return 1;
}
static int uint32_t___tostring(lua_State *L) {
const int args = lua_gettop(L);
if (args != 1) {
return luaL_argerror(L, args, "Expected 1 argument");
}
uint32_t v = *static_cast<uint32_t *>(luaL_checkudata(L, 1, "uint32_t"));
char buf[32];
hal.util->snprintf(buf, ARRAY_SIZE(buf), "%u", (unsigned)v);
lua_pushstring(L, buf);
return 1;
}
const luaL_Reg uint32_t_meta[] = {
{"__add", uint32_t___add},
{"__sub", uint32_t___sub},
{"__mul", uint32_t___mul},
{"__div", uint32_t___div},
{"__mod", uint32_t___mod},
{"__idiv", uint32_t___idiv},
{"__band", uint32_t___band},
{"__bor", uint32_t___bor},
{"__bxor", uint32_t___bxor},
{"__shl", uint32_t___shl},
{"__shr", uint32_t___shr},
{"__shr", uint32_t___shr},
{"__eq", uint32_t___eq},
{"__lt", uint32_t___lt},
{"__le", uint32_t___le},
{"__bnot", uint32_t___bnot},
{"__tostring", uint32_t___tostring},
{"toint", uint32_t_toint},
{"tofloat", uint32_t_tofloat},
{NULL, NULL}
};
void load_boxed_numerics(lua_State *L) {
luaL_checkstack(L, 5, "Out of stack");
luaL_newmetatable(L, "uint32_t");
luaL_setfuncs(L, uint32_t_meta, 0);
lua_pushstring(L, "__index");
lua_pushvalue(L, -2);
lua_settable(L, -3);
lua_pop(L, 1);
}
void load_boxed_numerics_sandbox(lua_State *L) {
// if there are ever more drivers then move to a table based solution
lua_pushstring(L, "uint32_t");
lua_pushcfunction(L, new_uint32_t);
lua_settable(L, -3);
}