Ardupilot2/ArduCopter/motors.pde
Randy Mackay a12d9109e0 Copter: remove thr check during init_arm_motors
This check is redundant now that we have a check within the arm_check()
function.
Removing this check does raise a slight danger that someone could raise
the throttle after arming but before the gyro and baro calibration has
completed but the delay has been greatly shortened from what it once was
so there is much less danger that someone could approach the vehicle
during the short arming delay.
2014-09-11 21:13:35 +09:00

650 lines
20 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define ARM_DELAY 20 // called at 10hz so 2 seconds
#define DISARM_DELAY 20 // called at 10hz so 2 seconds
#define AUTO_TRIM_DELAY 100 // called at 10hz so 10 seconds
#define AUTO_DISARMING_DELAY 15 // called at 1hz so 15 seconds
// arm_motors_check - checks for pilot input to arm or disarm the copter
// called at 10hz
static void arm_motors_check()
{
static int16_t arming_counter;
bool allow_arming = false;
// ensure throttle is down
if (g.rc_3.control_in > 0) {
arming_counter = 0;
return;
}
// allow arming/disarming in fully manual flight modes ACRO, STABILIZE, SPORT and DRIFT
if (manual_flight_mode(control_mode)) {
allow_arming = true;
}
// allow arming/disarming in Loiter and AltHold if landed
if (ap.land_complete && (control_mode == LOITER || control_mode == ALT_HOLD || control_mode == POSHOLD || control_mode == AUTOTUNE)) {
allow_arming = true;
}
// kick out other flight modes
if (!allow_arming) {
arming_counter = 0;
return;
}
#if FRAME_CONFIG == HELI_FRAME
// heli specific arming check
if (!motors.allow_arming()){
arming_counter = 0;
return;
}
#endif // HELI_FRAME
int16_t tmp = g.rc_4.control_in;
// full right
if (tmp > 4000) {
// increase the arming counter to a maximum of 1 beyond the auto trim counter
if( arming_counter <= AUTO_TRIM_DELAY ) {
arming_counter++;
}
// arm the motors and configure for flight
if (arming_counter == ARM_DELAY && !motors.armed()) {
// run pre-arm-checks and display failures
pre_arm_checks(true);
if(ap.pre_arm_check && arm_checks(true)) {
init_arm_motors();
}else{
// reset arming counter if pre-arm checks fail
arming_counter = 0;
AP_Notify::flags.arming_failed = true;
}
}
// arm the motors and configure for flight
if (arming_counter == AUTO_TRIM_DELAY && motors.armed() && control_mode == STABILIZE) {
auto_trim_counter = 250;
}
// full left
}else if (tmp < -4000) {
// increase the counter to a maximum of 1 beyond the disarm delay
if( arming_counter <= DISARM_DELAY ) {
arming_counter++;
}
// disarm the motors
if (arming_counter == DISARM_DELAY && motors.armed()) {
init_disarm_motors();
}
// Yaw is centered so reset arming counter
}else{
AP_Notify::flags.arming_failed = false;
arming_counter = 0;
}
}
// auto_disarm_check - disarms the copter if it has been sitting on the ground in manual mode with throttle low for at least 15 seconds
// called at 1hz
static void auto_disarm_check()
{
static uint8_t auto_disarming_counter;
// exit immediately if we are already disarmed or throttle is not zero
if (!motors.armed() || g.rc_3.control_in > 0) {
auto_disarming_counter = 0;
return;
}
// allow auto disarm in manual flight modes or Loiter/AltHold if we're landed
if (manual_flight_mode(control_mode) || (ap.land_complete && (control_mode == ALT_HOLD || control_mode == LOITER || control_mode == OF_LOITER ||
control_mode == DRIFT || control_mode == SPORT || control_mode == AUTOTUNE ||
control_mode == POSHOLD))) {
auto_disarming_counter++;
if(auto_disarming_counter >= AUTO_DISARMING_DELAY) {
init_disarm_motors();
auto_disarming_counter = 0;
}
}else{
auto_disarming_counter = 0;
}
}
// init_arm_motors - performs arming process including initialisation of barometer and gyros
static void init_arm_motors()
{
// arming marker
// Flag used to track if we have armed the motors the first time.
// This is used to decide if we should run the ground_start routine
// which calibrates the IMU
static bool did_ground_start = false;
// disable cpu failsafe because initialising everything takes a while
failsafe_disable();
// disable inertial nav errors temporarily
inertial_nav.ignore_next_error();
// notify that arming will occur (we do this early to give plenty of warning)
AP_Notify::flags.armed = true;
// call update_notify a few times to ensure the message gets out
for (uint8_t i=0; i<=10; i++) {
update_notify();
}
#if LOGGING_ENABLED == ENABLED
// start dataflash
start_logging();
#endif
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
gcs_send_text_P(SEVERITY_HIGH, PSTR("ARMING MOTORS"));
#endif
// Remember Orientation
// --------------------
init_simple_bearing();
initial_armed_bearing = ahrs.yaw_sensor;
// Reset home position
// -------------------
if (ap.home_is_set) {
init_home();
calc_distance_and_bearing();
}
if(did_ground_start == false) {
did_ground_start = true;
startup_ground(true);
}
// fast baro calibration to reset ground pressure
init_barometer(false);
// reset inertial nav alt to zero
inertial_nav.set_altitude(0.0f);
// go back to normal AHRS gains
ahrs.set_fast_gains(false);
// enable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(true);
ahrs.set_armed(true);
// set hover throttle
motors.set_mid_throttle(g.throttle_mid);
#if SPRAYER == ENABLED
// turn off sprayer's test if on
sprayer.test_pump(false);
#endif
// short delay to allow reading of rc inputs
delay(30);
// enable output to motors
output_min();
// finally actually arm the motors
motors.armed(true);
// log arming to dataflash
Log_Write_Event(DATA_ARMED);
// log flight mode in case it was changed while vehicle was disarmed
Log_Write_Mode(control_mode);
// reenable failsafe
failsafe_enable();
}
// perform pre-arm checks and set ap.pre_arm_check flag
static void pre_arm_checks(bool display_failure)
{
// exit immediately if we've already successfully performed the pre-arm check
if (ap.pre_arm_check) {
return;
}
// succeed if pre arm checks are disabled
if(g.arming_check == ARMING_CHECK_NONE) {
set_pre_arm_check(true);
set_pre_arm_rc_check(true);
return;
}
// pre-arm rc checks a prerequisite
pre_arm_rc_checks();
if(!ap.pre_arm_rc_check) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: RC not calibrated"));
}
return;
}
// check Baro
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) {
// barometer health check
if(!barometer.healthy()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Baro not healthy"));
}
return;
}
// check Baro & inav alt are within 1m
if(fabs(inertial_nav.get_altitude() - baro_alt) > 100) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Alt disparity"));
}
return;
}
}
// check Compass
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_COMPASS)) {
// check the primary compass is healthy
if(!compass.healthy(0)) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not healthy"));
}
return;
}
// check compass learning is on or offsets have been set
if(!compass.configured()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not calibrated"));
}
return;
}
// check for unreasonable compass offsets
Vector3f offsets = compass.get_offsets();
if(offsets.length() > 500) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass offsets too high"));
}
return;
}
// check for unreasonable mag field length
float mag_field = compass.get_field().length();
if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65 || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check mag field"));
}
return;
}
#if COMPASS_MAX_INSTANCES > 1
// check all compasses point in roughly same direction
if (compass.get_count() > 1) {
Vector3f prime_mag_vec = compass.get_field();
prime_mag_vec.normalize();
for(uint8_t i=0; i<compass.get_count(); i++) {
// get next compass
Vector3f mag_vec = compass.get_field(i);
mag_vec.normalize();
Vector3f vec_diff = mag_vec - prime_mag_vec;
if (vec_diff.length() > COMPASS_ACCEPTABLE_VECTOR_DIFF) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: compasses inconsistent"));
}
return;
}
}
}
#endif
}
// check GPS
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_GPS)) {
// check gps is ok if required - note this same check is repeated again in arm_checks
if ((mode_requires_GPS(control_mode) || g.failsafe_gps_enabled == FS_GPS_LAND_EVEN_STABILIZE) && !pre_arm_gps_checks(display_failure)) {
return;
}
#if AC_FENCE == ENABLED
// check fence is initialised
if(!fence.pre_arm_check() || (((fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) != 0) && !pre_arm_gps_checks(display_failure))) {
return;
}
#endif
}
// check INS
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
// check accelerometers have been calibrated
if(!ins.calibrated()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: INS not calibrated"));
}
return;
}
// check accels are healthy
if(!ins.get_accel_health_all()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Accels not healthy"));
}
return;
}
#if INS_MAX_INSTANCES > 1
// check all accelerometers point in roughly same direction
if (ins.get_accel_count() > 1) {
const Vector3f &prime_accel_vec = ins.get_accel();
for(uint8_t i=0; i<ins.get_accel_count(); i++) {
// get next accel vector
const Vector3f &accel_vec = ins.get_accel(i);
Vector3f vec_diff = accel_vec - prime_accel_vec;
if (vec_diff.length() > PREARM_MAX_ACCEL_VECTOR_DIFF) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Accels inconsistent"));
}
return;
}
}
}
#endif
// check gyros are healthy
if(!ins.get_gyro_health_all()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Gyros not healthy"));
}
return;
}
#if INS_MAX_INSTANCES > 1
// check all gyros are consistent
if (ins.get_gyro_count() > 1) {
for(uint8_t i=0; i<ins.get_gyro_count(); i++) {
// get rotation rate difference between gyro #i and primary gyro
Vector3f vec_diff = ins.get_gyro(i) - ins.get_gyro();
if (vec_diff.length() > PREARM_MAX_GYRO_VECTOR_DIFF) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Gyros inconsistent"));
}
return;
}
}
}
#endif
}
#if CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN
#ifndef CONFIG_ARCH_BOARD_PX4FMU_V1
// check board voltage
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) {
if(hal.analogin->board_voltage() < BOARD_VOLTAGE_MIN || hal.analogin->board_voltage() > BOARD_VOLTAGE_MAX) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check Board Voltage"));
}
return;
}
}
#endif
#endif
// check various parameter values
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) {
// ensure ch7 and ch8 have different functions
if ((g.ch7_option != 0 || g.ch8_option != 0) && g.ch7_option == g.ch8_option) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Ch7&Ch8 Opt cannot be same"));
}
return;
}
// failsafe parameter checks
if (g.failsafe_throttle) {
// check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900
if (g.rc_3.radio_min <= g.failsafe_throttle_value+10 || g.failsafe_throttle_value < 910) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check FS_THR_VALUE"));
}
return;
}
}
// lean angle parameter check
if (aparm.angle_max < 1000 || aparm.angle_max > 8000) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check ANGLE_MAX"));
}
return;
}
// acro balance parameter check
if ((g.acro_balance_roll > g.p_stabilize_roll.kP()) || (g.acro_balance_pitch > g.p_stabilize_pitch.kP())) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: ACRO_BAL_ROLL/PITCH"));
}
return;
}
}
// if we've gotten this far then pre arm checks have completed
set_pre_arm_check(true);
}
// perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag
static void pre_arm_rc_checks()
{
// exit immediately if we've already successfully performed the pre-arm rc check
if( ap.pre_arm_rc_check ) {
return;
}
// set rc-checks to success if RC checks are disabled
if ((g.arming_check != ARMING_CHECK_ALL) && !(g.arming_check & ARMING_CHECK_RC)) {
set_pre_arm_rc_check(true);
return;
}
// check if radio has been calibrated
if(!g.rc_3.radio_min.load() && !g.rc_3.radio_max.load()) {
return;
}
// check channels 1 & 2 have min <= 1300 and max >= 1700
if (g.rc_1.radio_min > 1300 || g.rc_1.radio_max < 1700 || g.rc_2.radio_min > 1300 || g.rc_2.radio_max < 1700) {
return;
}
// check channels 3 & 4 have min <= 1300 and max >= 1700
if (g.rc_3.radio_min > 1300 || g.rc_3.radio_max < 1700 || g.rc_4.radio_min > 1300 || g.rc_4.radio_max < 1700) {
return;
}
// if we've gotten this far rc is ok
set_pre_arm_rc_check(true);
}
// performs pre_arm gps related checks and returns true if passed
static bool pre_arm_gps_checks(bool display_failure)
{
float speed_cms = inertial_nav.get_velocity().length(); // speed according to inertial nav in cm/s
// check GPS is not glitching
if (gps_glitch.glitching()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: GPS Glitch"));
}
return false;
}
// ensure GPS is ok
if (!GPS_ok()) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Need 3D Fix"));
}
return false;
}
// check speed is below 50cm/s
if (speed_cms == 0 || speed_cms > PREARM_MAX_VELOCITY_CMS) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Bad Velocity"));
}
return false;
}
// warn about hdop separately - to prevent user confusion with no gps lock
if (gps.get_hdop() > g.gps_hdop_good) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: High GPS HDOP"));
}
return false;
}
// if we got here all must be ok
return true;
}
// arm_checks - perform final checks before arming
// always called just before arming. Return true if ok to arm
static bool arm_checks(bool display_failure)
{
// succeed if arming checks are disabled
if (g.arming_check == ARMING_CHECK_NONE) {
return true;
}
// check throttle is down
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_RC)) {
if (g.rc_3.control_in > 0) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Thr too high"));
}
return false;
}
}
// check Baro & inav alt are within 1m
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) {
if(fabs(inertial_nav.get_altitude() - baro_alt) > 100) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Alt disparity"));
}
return false;
}
}
// check gps is ok if required - note this same check is also done in pre-arm checks
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_GPS)) {
if ((mode_requires_GPS(control_mode) || g.failsafe_gps_enabled == FS_GPS_LAND_EVEN_STABILIZE) && !pre_arm_gps_checks(display_failure)) {
return false;
}
}
// check parameters
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) {
// check throttle is above failsafe throttle
if (g.failsafe_throttle != FS_THR_DISABLED && g.rc_3.radio_in < g.failsafe_throttle_value) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Thr below FS"));
}
return false;
}
}
// check lean angle
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) {
if (labs(ahrs.roll_sensor) > aparm.angle_max || labs(ahrs.pitch_sensor) > aparm.angle_max) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Leaning"));
}
return false;
}
}
// check if safety switch has been pushed
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
if (display_failure) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Safety Switch"));
}
return false;
}
// if we've gotten this far all is ok
return true;
}
// init_disarm_motors - disarm motors
static void init_disarm_motors()
{
// return immediately if we are already disarmed
if (!motors.armed()) {
return;
}
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
gcs_send_text_P(SEVERITY_HIGH, PSTR("DISARMING MOTORS"));
#endif
motors.armed(false);
// disable inertial nav errors temporarily
inertial_nav.ignore_next_error();
// save offsets if automatic offset learning is on
if (compass.learn_offsets_enabled()) {
compass.save_offsets();
}
g.throttle_cruise.save();
#if AUTOTUNE_ENABLED == ENABLED
// save auto tuned parameters
autotune_save_tuning_gains();
#endif
// we are not in the air
set_land_complete(true);
// reset the mission
mission.reset();
// setup fast AHRS gains to get right attitude
ahrs.set_fast_gains(true);
// log disarm to the dataflash
Log_Write_Event(DATA_DISARMED);
// suspend logging
DataFlash.EnableWrites(false);
// disable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(false);
ahrs.set_armed(false);
}
/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
static void
set_servos_4()
{
// check if we are performing the motor test
if (ap.motor_test) {
motor_test_output();
} else {
#if FRAME_CONFIG == TRI_FRAME
// To-Do: implement improved stability patch for tri so that we do not need to limit throttle input to motors
g.rc_3.servo_out = min(g.rc_3.servo_out, 800);
#endif
motors.output();
}
}