Ardupilot2/libraries/AP_IOMCU/iofirmware/iofirmware.cpp
2023-08-15 06:53:48 +10:00

1113 lines
36 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
IOMCU main firmware
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_Math/crc.h>
#include "iofirmware.h"
#include <AP_HAL_ChibiOS/RCInput.h>
#include <AP_HAL_ChibiOS/RCOutput.h>
#include "analog.h"
#include "rc.h"
#include <AP_HAL_ChibiOS/hwdef/common/watchdog.h>
extern const AP_HAL::HAL &hal;
// we build this file with optimisation to lower the interrupt
// latency. This helps reduce the chance of losing an RC input byte
// due to missing a UART interrupt
#pragma GCC optimize("O2")
static AP_IOMCU_FW iomcu;
void setup();
void loop();
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
/*
enable testing of IOMCU reset using safety switch
a value of 0 means normal operation
a value of 1 means test with watchdog
a value of 2 means test with reboot
*/
#define IOMCU_ENABLE_RESET_TEST 0
#ifndef IOMCU_SEND_TX_FROM_RX
#define IOMCU_SEND_TX_FROM_RX 1
#endif
// enable timing GPIO pings
#ifdef IOMCU_LOOP_TIMING_DEBUG
#undef TOGGLE_PIN_DEBUG
#define TOGGLE_PIN_DEBUG(pin) do { palToggleLine(HAL_GPIO_LINE_GPIO ## pin); } while (0)
#endif
// pending events on the main thread
enum ioevents {
IOEVENT_PWM = EVENT_MASK(1),
IOEVENT_TX_BEGIN = EVENT_MASK(2),
IOEVENT_TX_END = EVENT_MASK(3),
};
// see https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx for a discussion of how to run
// separate tx and rx streams
static void setup_rx_dma(hal_uart_driver* uart)
{
uart->usart->CR3 &= ~USART_CR3_DMAR;
dmaStreamDisable(uart->dmarx);
dmaStreamSetMemory0(uart->dmarx, &iomcu.rx_io_packet);
dmaStreamSetTransactionSize(uart->dmarx, sizeof(iomcu.rx_io_packet));
dmaStreamSetPeripheral(uart->dmarx, &(uart->usart->DR));
dmaStreamSetMode(uart->dmarx, uart->dmarxmode | STM32_DMA_CR_DIR_P2M |
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE);
dmaStreamEnable(uart->dmarx);
uart->usart->CR3 |= USART_CR3_DMAR;
}
static void setup_tx_dma(hal_uart_driver* uart)
{
uart->usart->CR3 &= ~USART_CR3_DMAT;
dmaStreamDisable(uart->dmatx);
dmaStreamSetMemory0(uart->dmatx, &iomcu.tx_io_packet);
dmaStreamSetTransactionSize(uart->dmatx, iomcu.tx_io_packet.get_size());
// starting the UART allocates the peripheral statically, so we need to reinstate it after swapping
dmaStreamSetPeripheral(uart->dmatx, &(uart->usart->DR));
dmaStreamSetMode(uart->dmatx, uart->dmatxmode | STM32_DMA_CR_DIR_M2P |
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE);
// enable transmission complete interrupt
uart->usart->SR = ~USART_SR_TC;
uart->usart->CR1 |= USART_CR1_TCIE;
dmaStreamEnable(uart->dmatx);
uart->usart->CR3 |= USART_CR3_DMAT;
}
static void dma_rx_end_cb(hal_uart_driver *uart)
{
chSysLockFromISR();
uart->usart->CR3 &= ~USART_CR3_DMAR;
(void)uart->usart->SR; // sequence to clear IDLE status
(void)uart->usart->DR;
(void)uart->usart->DR;
dmaStreamDisable(uart->dmarx);
iomcu.process_io_packet();
setup_rx_dma(uart);
#if AP_HAL_SHARED_DMA_ENABLED
// indicate that a response needs to be sent
uint32_t mask = chEvtGetAndClearEventsI(IOEVENT_TX_BEGIN);
if (mask) {
iomcu.reg_status.err_lock++;
}
// the FMU code waits 10ms for a reply so this should be easily fast enough
chEvtSignalI(iomcu.thread_ctx, IOEVENT_TX_BEGIN);
#else
setup_tx_dma(uart);
#endif
chSysUnlockFromISR();
}
static void dma_tx_end_cb(hal_uart_driver *uart)
{
// DMA stream has already been disabled at this point
uart->usart->CR3 &= ~USART_CR3_DMAT;
(void)uart->usart->SR;
(void)uart->usart->DR;
(void)uart->usart->DR;
TOGGLE_PIN_DEBUG(108);
TOGGLE_PIN_DEBUG(108);
chEvtSignalI(iomcu.thread_ctx, iomcu.fmu_events | IOEVENT_TX_END);
iomcu.fmu_events = 0;
}
/* replacement for ChibiOS uart_lld_serve_interrupt() */
static void idle_rx_handler(hal_uart_driver *uart)
{
volatile uint16_t sr;
sr = uart->usart->SR; /* SR reset step 1.*/
uint32_t cr1 = uart->usart->CR1;
if (sr & (USART_SR_LBD | USART_SR_ORE | /* overrun error - packet was too big for DMA or DMA was too slow */
USART_SR_NE | /* noise error - we have lost a byte due to noise */
USART_SR_FE |
USART_SR_PE)) { /* framing error - start/stop bit lost or line break */
/* send a line break - this will abort transmission/reception on the other end */
chSysLockFromISR();
uart->usart->SR = ~USART_SR_LBD;
uart->usart->CR1 = cr1 | USART_CR1_SBK;
iomcu.reg_status.num_errors++;
iomcu.reg_status.err_uart++;
uart->usart->CR3 &= ~USART_CR3_DMAR;
(void)uart->usart->SR; // clears ORE | FE
(void)uart->usart->DR;
(void)uart->usart->DR;
setup_rx_dma(uart);
chSysUnlockFromISR();
return;
}
if ((sr & USART_SR_TC) && (cr1 & USART_CR1_TCIE)) {
chSysLockFromISR();
/* TC interrupt cleared and disabled.*/
uart->usart->SR &= ~USART_SR_TC;
uart->usart->CR1 = cr1 & ~USART_CR1_TCIE;
/* End of transmission, a callback is generated.*/
_uart_tx2_isr_code(uart);
chSysUnlockFromISR();
}
if (sr & USART_SR_IDLE) {
/* the DMA size is the maximum packet size, but smaller packets are perfectly possible leading to
an IDLE ISR. The data still must be processed. */
dma_rx_end_cb(uart);
}
}
using namespace ChibiOS;
#if AP_HAL_SHARED_DMA_ENABLED
/*
copy of uart_lld_serve_tx_end_irq() from ChibiOS hal_uart_lld
that is re-instated upon switching the DMA channel
*/
static void uart_lld_serve_tx_end_irq(hal_uart_driver *uart, uint32_t flags) {
/* DMA errors handling.*/
if ((flags & (STM32_DMA_ISR_TEIF | STM32_DMA_ISR_DMEIF)) != 0) {
}
dmaStreamDisable(uart->dmatx);
/* A callback is generated, if enabled, after a completed transfer.*/
_uart_tx1_isr_code(uart);
}
void AP_IOMCU_FW::tx_dma_allocate(Shared_DMA *ctx)
{
hal_uart_driver *uart = &UARTD2;
chSysLock();
if (uart->dmatx == nullptr) {
uart->dmatx = dmaStreamAllocI(STM32_UART_USART2_TX_DMA_STREAM,
STM32_UART_USART2_IRQ_PRIORITY,
(stm32_dmaisr_t)uart_lld_serve_tx_end_irq,
(void *)uart);
}
chSysUnlock();
}
/*
deallocate DMA channel
*/
void AP_IOMCU_FW::tx_dma_deallocate(Shared_DMA *ctx)
{
hal_uart_driver *uart = &UARTD2;
chSysLock();
if (uart->dmatx != nullptr) {
// defensively make sure the DMA is fully shutdown before swapping
uart->usart->CR3 &= ~USART_CR3_DMAT;
dmaStreamDisable(uart->dmatx);
dmaStreamSetPeripheral(uart->dmatx, nullptr);
dmaStreamFreeI(uart->dmatx);
uart->dmatx = nullptr;
}
chSysUnlock();
}
#endif // AP_HAL_SHARED_DMA_ENABLED
/*
* UART driver configuration structure.
*/
static UARTConfig uart_cfg = {
nullptr,
dma_tx_end_cb,
dma_rx_end_cb,
nullptr,
nullptr,
idle_rx_handler,
nullptr,
1500000, //1.5MBit
USART_CR1_IDLEIE,
0,
0
};
void setup(void)
{
hal.rcin->init();
hal.rcout->init();
iomcu.init();
iomcu.calculate_fw_crc();
uartStart(&UARTD2, &uart_cfg);
uartStartReceive(&UARTD2, sizeof(iomcu.rx_io_packet), &iomcu.rx_io_packet);
#if AP_HAL_SHARED_DMA_ENABLED
iomcu.tx_dma_handle->unlock();
#endif
// disable the pieces from the UART which will get enabled later
chSysLock();
UARTD2.usart->CR3 &= ~USART_CR3_DMAT;
chSysUnlock();
}
void loop(void)
{
iomcu.update();
}
void AP_IOMCU_FW::init()
{
// the first protocol version must be 4 to allow downgrade to
// old NuttX based firmwares
config.protocol_version = IOMCU_PROTOCOL_VERSION;
config.protocol_version2 = IOMCU_PROTOCOL_VERSION2;
thread_ctx = chThdGetSelfX();
#if AP_HAL_SHARED_DMA_ENABLED
tx_dma_handle = new ChibiOS::Shared_DMA(STM32_UART_USART2_TX_DMA_STREAM, SHARED_DMA_NONE,
FUNCTOR_BIND_MEMBER(&AP_IOMCU_FW::tx_dma_allocate, void, Shared_DMA *),
FUNCTOR_BIND_MEMBER(&AP_IOMCU_FW::tx_dma_deallocate, void, Shared_DMA *));
tx_dma_handle->lock();
// deallocate so that the uart initializes correctly
tx_dma_deallocate(tx_dma_handle);
#endif
if (palReadLine(HAL_GPIO_PIN_IO_HW_DETECT1) == 1 && palReadLine(HAL_GPIO_PIN_IO_HW_DETECT2) == 0) {
has_heater = true;
}
//Set Heater pin mode
if (heater_pwm_polarity) {
palSetLineMode(HAL_GPIO_PIN_HEATER, PAL_MODE_OUTPUT_PUSHPULL);
} else {
palSetLineMode(HAL_GPIO_PIN_HEATER, PAL_MODE_OUTPUT_OPENDRAIN);
}
adc_init();
rcin_serial_init();
// power on spektrum port
palSetLineMode(HAL_GPIO_PIN_SPEKTRUM_PWR_EN, PAL_MODE_OUTPUT_PUSHPULL);
SPEKTRUM_POWER(1);
// we generally do no allocations after setup completes
reg_status.freemem = hal.util->available_memory();
if (hal.util->was_watchdog_safety_off()) {
hal.rcout->force_safety_off();
reg_status.flag_safety_off = true;
}
}
#if CH_DBG_ENABLE_STACK_CHECK == TRUE
static void stackCheck(uint16_t& mstack, uint16_t& pstack) {
extern uint32_t __main_stack_base__[];
extern uint32_t __main_stack_end__[];
uint32_t stklimit = (uint32_t)__main_stack_end__;
uint32_t stkbase = (uint32_t)__main_stack_base__;
uint32_t *crawl = (uint32_t *)stkbase;
while (*crawl == 0x55555555 && crawl < (uint32_t *)stklimit) {
crawl++;
}
uint32_t free = (uint32_t)crawl - stkbase;
chDbgAssert(free > 0, "mstack exhausted");
mstack = (uint16_t)free;
extern uint32_t __main_thread_stack_base__[];
extern uint32_t __main_thread_stack_end__[];
stklimit = (uint32_t)__main_thread_stack_end__;
stkbase = (uint32_t)__main_thread_stack_base__;
crawl = (uint32_t *)stkbase;
while (*crawl == 0x55555555 && crawl < (uint32_t *)stklimit) {
crawl++;
}
free = (uint32_t)crawl - stkbase;
chDbgAssert(free > 0, "pstack exhausted");
pstack = (uint16_t)free;
}
#endif /* CH_DBG_ENABLE_STACK_CHECK == TRUE */
/*
Update loop design.
Considerations - the F100 is quite slow and so processing time needs to be used effectively.
The CPU time slices required by dshot are generally faster than those required for other processing.
Dshot requires even updates at at least 1Khz and generally faster if SERVO_DSHOT_RATE is used.
The two most time sensitive regular functions are (1) PWM updates which run at loop rate triggered from the FMU
(and thus require efficient code page write) and (2) rcin updates which run at a fixed 1Khz cycle (a speed
which is assumed by the rcin protocol handlers) and require efficient code read. The FMU sends code page
requests which require a response within 10ms in order to prevent the IOMCU being considered to have failed,
however code page requests are always initiated by the FMU and so the IOMCU only ever needs to be ready
to read requests - writing responses are always in response to a request. Finally, PWM channels 3-4 share a DMA
channel with UART TX and so access needs to be mediated.
Design -
1. requests are read using circular DMA. In other words the RX side of the UART is always ready. Once
a request has been processed DMA is immediately set up for a new request.
2. responses are only ever sent in response to a request. As soon as a request is received the ISR only
ever requests that a response be sent - it never actually sends a response.
3. The update loop waits for four different events:
3a - a request has been received and should be processed. This does not require the TX DMA lock.
3b - a response needs to be sent. This requires the TX DMA lock.
3c - a response has been sent. This allows the TX DMA lock to be released.
3d - an out of band PWM request, usually triggered by a failsafe needs to be processed.
Since requests are processed continuously it is possible for 3b and 3c to occur simultaneously. Since the
TX lock is already held to send the previous response, there is no need to do anything with the lock in order
to process the next response.
Profiling shows that sending a response takes very little time - 10s of microseconds - and so a response is sent
if required at the beginning of the update. This means that by the end of the update there is a very high chance
that the response will have already been sent and this is therefore checked. If the response has been sent the
lock is released. If for some reason the response has not gone out, as soon as it does an event will be posted
and the update loop will run again.
This design means that on average the update loop is idle with the TX DMA channel unlocked. This maximises the
time that dshot can run uninterrupted leading to very efficient and even output.
Finally the update loop has a timeout which forces updates to progress even in the absence of requests from the
FMU. Since responses will always be triggered in a timely fashion, regardlesss of the timeout, this can be
set relatively long.
If compiled without sharing, DMA - and thus dshot - is not used on channels 3-4, there are no locks and responses
are always setup in the request ISR handler.
*/
void AP_IOMCU_FW::update()
{
#if CH_CFG_ST_FREQUENCY == 1000000
eventmask_t mask = chEvtWaitAnyTimeout(IOEVENT_PWM | IOEVENT_TX_END | IOEVENT_TX_BEGIN, TIME_US2I(1000));
#else
// we are not running any other threads, so we can use an
// immediate timeout here for lowest latency
eventmask_t mask = chEvtWaitAnyTimeout(IOEVENT_PWM | IOEVENT_TX_END, TIME_IMMEDIATE);
#endif
TOGGLE_PIN_DEBUG(107);
iomcu.reg_status.total_ticks++;
if (mask) {
iomcu.reg_status.total_events++;
}
#if AP_HAL_SHARED_DMA_ENABLED
// See discussion above
if ((mask & IOEVENT_TX_BEGIN) && !(mask & IOEVENT_TX_END)) { // 3b - lock required to send response
tx_dma_handle->lock();
} else if (!(mask & IOEVENT_TX_BEGIN) && (mask & IOEVENT_TX_END)) { // 3c - response sent, lock can be released
tx_dma_handle->unlock();
} // else 3b and 3c - current lock required for new response
// send a response if required
if (mask & IOEVENT_TX_BEGIN) {
chSysLock();
reg_status.deferred_locks++;
setup_tx_dma(&UARTD2);
chSysUnlock();
}
#endif
// we get the timestamp once here, and avoid fetching it
// within the DMA callbacks
last_ms = AP_HAL::millis();
loop_counter++;
if (do_reboot && (last_ms > reboot_time)) {
hal.scheduler->reboot(true);
while (true) {}
}
if ((mask & IOEVENT_PWM) ||
(last_safety_off != reg_status.flag_safety_off)) {
last_safety_off = reg_status.flag_safety_off;
pwm_out_update();
}
uint32_t now = last_ms;
uint32_t now_us = AP_HAL::micros();
reg_status.timestamp_ms = last_ms;
// output SBUS if enabled
if ((reg_setup.features & P_SETUP_FEATURES_SBUS1_OUT) &&
reg_status.flag_safety_off &&
now - sbus_last_ms >= sbus_interval_ms) {
// output a new SBUS frame
sbus_last_ms = now;
sbus_out_write(reg_servo.pwm, IOMCU_MAX_CHANNELS);
}
// handle FMU failsafe
if (now - fmu_data_received_time > 200) {
// we are not getting input from the FMU. Fill in failsafe values at 100Hz
if (now - last_failsafe_ms > 10) {
fill_failsafe_pwm();
chEvtSignal(thread_ctx, IOEVENT_PWM);
last_failsafe_ms = now;
}
// turn amber on
AMBER_SET(1);
} else {
last_failsafe_ms = now;
// turn amber off
AMBER_SET(0);
}
// update status page at 20Hz
if (now - last_status_ms > 50) {
last_status_ms = now;
page_status_update();
}
// run fast loop functions at 1Khz
if (now_us - last_fast_loop_us > 1000) {
last_fast_loop_us = now_us;
rcin_update();
rcin_serial_update();
}
// run remaining functions at 100Hz
// these are all relatively expensive and take ~10ms to complete
// so there is no way they can effectively be run faster than 100Hz
if (now - last_slow_loop_ms > 10) {
last_slow_loop_ms = now;
heater_update();
safety_update();
rcout_config_update();
hal.rcout->timer_tick();
if (dsm_bind_state) {
dsm_bind_step();
}
GPIO_write();
#if CH_DBG_ENABLE_STACK_CHECK == TRUE
stackCheck(reg_status.freemstack, reg_status.freepstack);
#endif
}
#if AP_HAL_SHARED_DMA_ENABLED
// check whether a response has now been sent
mask = chEvtGetAndClearEvents(IOEVENT_TX_END);
if (mask) {
tx_dma_handle->unlock();
}
#endif
TOGGLE_PIN_DEBUG(107);
}
void AP_IOMCU_FW::pwm_out_update()
{
memcpy(reg_servo.pwm, reg_direct_pwm.pwm, sizeof(reg_direct_pwm));
hal.rcout->cork();
for (uint8_t i = 0; i < SERVO_COUNT; i++) {
if (reg_status.flag_safety_off || (reg_setup.ignore_safety & (1U<<i))) {
hal.rcout->write(i, reg_servo.pwm[i]);
} else {
hal.rcout->write(i, 0);
}
}
hal.rcout->push();
}
void AP_IOMCU_FW::heater_update()
{
uint32_t now = last_ms;
if (!has_heater) {
// use blue LED as heartbeat, run it 4x faster when override active
if (now - last_blue_led_ms > (override_active?125:500)) {
BLUE_TOGGLE();
last_blue_led_ms = now;
}
} else if (reg_setup.heater_duty_cycle == 0 || (now - last_heater_ms > 3000UL)) {
// turn off the heater
HEATER_SET(!heater_pwm_polarity);
} else {
// we use a pseudo random sequence to dither the cycling as
// the heater has a significant effect on the internal
// magnetometers. The random generator dithers this so we don't get a 1Hz cycly in the magnetometer.
// The impact on the mags is about 25 mGauss.
bool heater_on = (get_random16() < uint32_t(reg_setup.heater_duty_cycle) * 0xFFFFU / 100U);
HEATER_SET(heater_on? heater_pwm_polarity : !heater_pwm_polarity);
}
}
void AP_IOMCU_FW::rcin_update()
{
((ChibiOS::RCInput *)hal.rcin)->_timer_tick();
if (hal.rcin->new_input()) {
const auto &rc = AP::RC();
rc_input.count = hal.rcin->num_channels();
rc_input.flags_rc_ok = true;
hal.rcin->read(rc_input.pwm, IOMCU_MAX_CHANNELS);
rc_last_input_ms = last_ms;
rc_input.rc_protocol = (uint16_t)rc.protocol_detected();
rc_input.rssi = rc.get_RSSI();
rc_input.flags_failsafe = rc.failsafe_active();
} else if (last_ms - rc_last_input_ms > 200U) {
rc_input.flags_rc_ok = false;
}
if (update_rcout_freq) {
hal.rcout->set_freq(reg_setup.pwm_rates, reg_setup.pwm_altrate);
update_rcout_freq = false;
}
if (update_default_rate) {
hal.rcout->set_default_rate(reg_setup.pwm_defaultrate);
update_default_rate = false;
}
bool old_override = override_active;
// check for active override channel
if (mixing.enabled &&
mixing.rc_chan_override > 0 &&
rc_input.flags_rc_ok &&
mixing.rc_chan_override <= IOMCU_MAX_CHANNELS) {
override_active = (rc_input.pwm[mixing.rc_chan_override-1] >= 1750);
} else {
override_active = false;
}
if (old_override != override_active) {
if (override_active) {
fill_failsafe_pwm();
}
chEvtSignal(thread_ctx, IOEVENT_PWM);
}
}
void AP_IOMCU_FW::process_io_packet()
{
iomcu.reg_status.total_pkts++;
uint8_t rx_crc = rx_io_packet.crc;
uint8_t calc_crc;
rx_io_packet.crc = 0;
uint8_t pkt_size = rx_io_packet.get_size();
if (rx_io_packet.code == CODE_READ) {
// allow for more bandwidth efficient read packets
calc_crc = crc_crc8((const uint8_t *)&rx_io_packet, 4);
if (calc_crc != rx_crc) {
calc_crc = crc_crc8((const uint8_t *)&rx_io_packet, pkt_size);
}
} else {
calc_crc = crc_crc8((const uint8_t *)&rx_io_packet, pkt_size);
}
if (rx_crc != calc_crc || rx_io_packet.count > PKT_MAX_REGS) {
tx_io_packet.count = 0;
tx_io_packet.code = CODE_CORRUPT;
tx_io_packet.crc = 0;
tx_io_packet.page = 0;
tx_io_packet.offset = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
iomcu.reg_status.num_errors++;
iomcu.reg_status.err_crc++;
return;
}
switch (rx_io_packet.code) {
case CODE_READ: {
if (!handle_code_read()) {
tx_io_packet.count = 0;
tx_io_packet.code = CODE_ERROR;
tx_io_packet.crc = 0;
tx_io_packet.page = 0;
tx_io_packet.offset = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
iomcu.reg_status.num_errors++;
iomcu.reg_status.err_read++;
}
}
break;
case CODE_WRITE: {
if (!handle_code_write()) {
tx_io_packet.count = 0;
tx_io_packet.code = CODE_ERROR;
tx_io_packet.crc = 0;
tx_io_packet.page = 0;
tx_io_packet.offset = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
iomcu.reg_status.num_errors++;
iomcu.reg_status.err_write++;
}
}
break;
default: {
iomcu.reg_status.num_errors++;
iomcu.reg_status.err_bad_opcode++;
}
break;
}
}
/*
update dynamic elements of status page
*/
void AP_IOMCU_FW::page_status_update(void)
{
if ((reg_setup.features & P_SETUP_FEATURES_SBUS1_OUT) == 0) {
// we can only get VRSSI when sbus is disabled
reg_status.vrssi = adc_sample_vrssi();
} else {
reg_status.vrssi = 0;
}
reg_status.vservo = adc_sample_vservo();
}
bool AP_IOMCU_FW::handle_code_read()
{
uint16_t *values = nullptr;
#define COPY_PAGE(_page_name) \
do { \
values = (uint16_t *)&_page_name; \
tx_io_packet.count = sizeof(_page_name) / sizeof(uint16_t); \
} while(0);
switch (rx_io_packet.page) {
case PAGE_CONFIG:
COPY_PAGE(config);
break;
case PAGE_SETUP:
COPY_PAGE(reg_setup);
break;
case PAGE_RAW_RCIN:
COPY_PAGE(rc_input);
break;
case PAGE_STATUS:
COPY_PAGE(reg_status);
break;
case PAGE_SERVOS:
COPY_PAGE(reg_servo);
break;
default:
return false;
}
/* if the offset is at or beyond the end of the page, we have no data */
if (rx_io_packet.offset + rx_io_packet.count > tx_io_packet.count) {
return false;
}
/* correct the data pointer and count for the offset */
values += rx_io_packet.offset;
tx_io_packet.page = rx_io_packet.page;
tx_io_packet.offset = rx_io_packet.offset;
tx_io_packet.count -= rx_io_packet.offset;
tx_io_packet.count = MIN(tx_io_packet.count, rx_io_packet.count);
tx_io_packet.count = MIN(tx_io_packet.count, PKT_MAX_REGS);
tx_io_packet.code = CODE_SUCCESS;
memcpy(tx_io_packet.regs, values, sizeof(uint16_t)*tx_io_packet.count);
tx_io_packet.crc = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
return true;
}
bool AP_IOMCU_FW::handle_code_write()
{
switch (rx_io_packet.page) {
case PAGE_SETUP:
switch (rx_io_packet.offset) {
case PAGE_REG_SETUP_ARMING:
reg_setup.arming = rx_io_packet.regs[0];
break;
case PAGE_REG_SETUP_FORCE_SAFETY_OFF:
if (rx_io_packet.regs[0] == FORCE_SAFETY_MAGIC) {
hal.rcout->force_safety_off();
reg_status.flag_safety_off = true;
} else {
return false;
}
break;
case PAGE_REG_SETUP_FORCE_SAFETY_ON:
if (rx_io_packet.regs[0] == FORCE_SAFETY_MAGIC) {
hal.rcout->force_safety_on();
reg_status.flag_safety_off = false;
} else {
return false;
}
break;
case PAGE_REG_SETUP_ALTRATE:
reg_setup.pwm_altrate = rx_io_packet.regs[0];
update_rcout_freq = true;
break;
case PAGE_REG_SETUP_PWM_RATE_MASK:
reg_setup.pwm_rates = rx_io_packet.regs[0];
update_rcout_freq = true;
break;
case PAGE_REG_SETUP_DEFAULTRATE:
if (rx_io_packet.regs[0] < 25 && reg_setup.pwm_altclock == 1) {
rx_io_packet.regs[0] = 25;
}
if (rx_io_packet.regs[0] > 400 && reg_setup.pwm_altclock == 1) {
rx_io_packet.regs[0] = 400;
}
reg_setup.pwm_defaultrate = rx_io_packet.regs[0];
update_default_rate = true;
break;
case PAGE_REG_SETUP_DSHOT_PERIOD:
reg_setup.dshot_period_us = rx_io_packet.regs[0];
reg_setup.dshot_rate = rx_io_packet.regs[1];
hal.rcout->set_dshot_period(reg_setup.dshot_period_us, reg_setup.dshot_rate);
break;
case PAGE_REG_SETUP_CHANNEL_MASK:
reg_setup.channel_mask = rx_io_packet.regs[0];
break;
case PAGE_REG_SETUP_SBUS_RATE:
reg_setup.sbus_rate = rx_io_packet.regs[0];
sbus_interval_ms = MAX(1000U / reg_setup.sbus_rate,3);
break;
case PAGE_REG_SETUP_FEATURES:
reg_setup.features = rx_io_packet.regs[0];
/* disable the conflicting options with SBUS 1 */
if (reg_setup.features & (P_SETUP_FEATURES_SBUS1_OUT)) {
reg_setup.features &= ~(P_SETUP_FEATURES_PWM_RSSI |
P_SETUP_FEATURES_ADC_RSSI |
P_SETUP_FEATURES_SBUS2_OUT);
// enable SBUS output at specified rate
sbus_interval_ms = MAX(1000U / reg_setup.sbus_rate,3);
// we need to release the JTAG reset pin to be used as a GPIO, otherwise we can't enable
// or disable SBUS out
AFIO->MAPR = AFIO_MAPR_SWJ_CFG_NOJNTRST;
palClearLine(HAL_GPIO_PIN_SBUS_OUT_EN);
} else {
palSetLine(HAL_GPIO_PIN_SBUS_OUT_EN);
}
if (reg_setup.features & P_SETUP_FEATURES_HEATER) {
has_heater = true;
}
break;
case PAGE_REG_SETUP_OUTPUT_MODE:
mode_out.mask = rx_io_packet.regs[0];
mode_out.mode = rx_io_packet.regs[1];
break;
case PAGE_REG_SETUP_HEATER_DUTY_CYCLE:
reg_setup.heater_duty_cycle = rx_io_packet.regs[0];
last_heater_ms = last_ms;
break;
case PAGE_REG_SETUP_REBOOT_BL:
if (reg_status.flag_safety_off) {
// don't allow reboot while armed
return false;
}
// check the magic value
if (rx_io_packet.regs[0] != REBOOT_BL_MAGIC) {
return false;
}
schedule_reboot(100);
break;
case PAGE_REG_SETUP_IGNORE_SAFETY:
reg_setup.ignore_safety = rx_io_packet.regs[0];
((ChibiOS::RCOutput *)hal.rcout)->set_safety_mask(reg_setup.ignore_safety);
break;
case PAGE_REG_SETUP_DSM_BIND:
if (dsm_bind_state == 0) {
dsm_bind_state = 1;
}
break;
case PAGE_REG_SETUP_RC_PROTOCOLS: {
if (rx_io_packet.count == 2) {
uint32_t v;
memcpy(&v, &rx_io_packet.regs[0], 4);
AP::RC().set_rc_protocols(v);
}
break;
}
default:
break;
}
break;
case PAGE_DIRECT_PWM: {
if (override_active) {
// no input when override is active
break;
}
/* copy channel data */
uint16_t i = 0, offset = rx_io_packet.offset, num_values = rx_io_packet.count;
if (offset + num_values > sizeof(reg_direct_pwm.pwm)/2) {
return false;
}
while ((offset < IOMCU_MAX_CHANNELS) && (num_values > 0)) {
/* XXX range-check value? */
if (rx_io_packet.regs[i] != PWM_IGNORE_THIS_CHANNEL) {
reg_direct_pwm.pwm[offset] = rx_io_packet.regs[i];
}
offset++;
num_values--;
i++;
}
fmu_data_received_time = last_ms;
fmu_events |= IOEVENT_PWM;
break;
}
case PAGE_MIXING: {
uint16_t offset = rx_io_packet.offset, num_values = rx_io_packet.count;
if (offset + num_values > sizeof(mixing)/2) {
return false;
}
memcpy(((uint16_t *)&mixing)+offset, &rx_io_packet.regs[0], num_values*2);
break;
}
case PAGE_FAILSAFE_PWM: {
uint16_t offset = rx_io_packet.offset, num_values = rx_io_packet.count;
if (offset + num_values > sizeof(reg_failsafe_pwm.pwm)/2) {
return false;
}
memcpy((&reg_failsafe_pwm.pwm[0])+offset, &rx_io_packet.regs[0], num_values*2);
break;
}
case PAGE_GPIO:
if (rx_io_packet.count != 1) {
return false;
}
memcpy(&GPIO, &rx_io_packet.regs[0] + rx_io_packet.offset, sizeof(GPIO));
break;
case PAGE_DSHOT: {
uint16_t offset = rx_io_packet.offset, num_values = rx_io_packet.count;
if (offset + num_values > sizeof(dshot)/2) {
return false;
}
memcpy(((uint16_t *)&dshot)+offset, &rx_io_packet.regs[0], num_values*2);
if(dshot.telem_mask) {
hal.rcout->set_telem_request_mask(dshot.telem_mask);
}
if (dshot.command) {
hal.rcout->send_dshot_command(dshot.command, dshot.chan, dshot.command_timeout_ms, dshot.repeat_count, dshot.priority);
}
break;
}
default:
break;
}
tx_io_packet.count = 0;
tx_io_packet.code = CODE_SUCCESS;
tx_io_packet.crc = 0;
tx_io_packet.page = 0;
tx_io_packet.offset = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
return true;
}
void AP_IOMCU_FW::schedule_reboot(uint32_t time_ms)
{
do_reboot = true;
reboot_time = last_ms + time_ms;
}
void AP_IOMCU_FW::calculate_fw_crc(void)
{
#define APP_SIZE_MAX 0xf000
#define APP_LOAD_ADDRESS 0x08001000
// compute CRC of the current firmware
uint32_t sum = 0;
for (unsigned p = 0; p < APP_SIZE_MAX; p += 4) {
uint32_t bytes = *(uint32_t *)(p + APP_LOAD_ADDRESS);
sum = crc32_small(sum, (const uint8_t *)&bytes, sizeof(bytes));
}
reg_setup.crc[0] = sum & 0xFFFF;
reg_setup.crc[1] = sum >> 16;
}
/*
update safety state
*/
void AP_IOMCU_FW::safety_update(void)
{
uint32_t now = last_ms;
if (now - safety_update_ms < 100) {
// update safety at 10Hz
return;
}
safety_update_ms = now;
bool safety_pressed = palReadLine(HAL_GPIO_PIN_SAFETY_INPUT);
if (safety_pressed) {
if (reg_status.flag_safety_off && (reg_setup.arming & P_SETUP_ARMING_SAFETY_DISABLE_ON)) {
safety_pressed = false;
} else if ((!reg_status.flag_safety_off) && (reg_setup.arming & P_SETUP_ARMING_SAFETY_DISABLE_OFF)) {
safety_pressed = false;
}
}
if (safety_pressed) {
safety_button_counter++;
} else {
safety_button_counter = 0;
}
if (safety_button_counter == 10) {
// safety has been pressed for 1 second, change state
reg_status.flag_safety_off = !reg_status.flag_safety_off;
if (reg_status.flag_safety_off) {
hal.rcout->force_safety_off();
} else {
hal.rcout->force_safety_on();
}
}
#if IOMCU_ENABLE_RESET_TEST
{
// deliberate lockup of IOMCU on 5s button press, for testing
// watchdog
static uint32_t safety_test_counter;
static bool should_lockup;
if (palReadLine(HAL_GPIO_PIN_SAFETY_INPUT)) {
safety_test_counter++;
} else {
safety_test_counter = 0;
}
if (safety_test_counter == 50) {
should_lockup = true;
}
// wait for lockup for safety to be released so we don't end
// up in the bootloader
if (should_lockup && palReadLine(HAL_GPIO_PIN_SAFETY_INPUT) == 0) {
#if IOMCU_ENABLE_RESET_TEST == 1
// lockup with watchdog
while (true) {
hal.scheduler->delay(50);
palToggleLine(HAL_GPIO_PIN_SAFETY_LED);
}
#else
// hard fault to simulate power reset or software fault
void *foo = (void*)0xE000ED38;
typedef void (*fptr)();
fptr gptr = (fptr) (void *) foo;
gptr();
while (true) {}
#endif
}
}
#endif // IOMCU_ENABLE_RESET_TEST
led_counter = (led_counter+1) % 16;
const uint16_t led_pattern = reg_status.flag_safety_off?0xFFFF:0x5500;
palWriteLine(HAL_GPIO_PIN_SAFETY_LED, (led_pattern & (1U << led_counter))?0:1);
}
/*
update hal.rcout mode if needed
*/
void AP_IOMCU_FW::rcout_config_update(void)
{
// channels cannot be changed from within a lock zone
// so needs to be done here
if (GPIO.channel_mask != last_GPIO_channel_mask) {
for (uint8_t i=0; i<8; i++) {
if ((GPIO.channel_mask & (1U << i)) != 0) {
hal.rcout->disable_ch(i);
hal.gpio->pinMode(101+i, HAL_GPIO_OUTPUT);
} else {
hal.rcout->enable_ch(i);
}
}
last_GPIO_channel_mask = GPIO.channel_mask;
}
if (last_channel_mask != reg_setup.channel_mask) {
for (uint8_t i=0; i<IOMCU_MAX_CHANNELS; i++) {
if (reg_setup.channel_mask & 1U << i) {
hal.rcout->enable_ch(i);
} else {
hal.rcout->disable_ch(i);
}
}
last_channel_mask = reg_setup.channel_mask;
}
bool use_dshot = mode_out.mode >= AP_HAL::RCOutput::MODE_PWM_DSHOT150
&& mode_out.mode <= AP_HAL::RCOutput::MODE_PWM_DSHOT300;
if (use_dshot && !dshot_enabled) {
dshot_enabled = true;
hal.rcout->set_output_mode(mode_out.mask, (AP_HAL::RCOutput::output_mode)mode_out.mode);
// enabling dshot changes the memory allocation
reg_status.freemem = hal.util->available_memory();
}
bool use_oneshot = (mode_out.mode == AP_HAL::RCOutput::MODE_PWM_ONESHOT
|| mode_out.mode == AP_HAL::RCOutput::MODE_PWM_ONESHOT125);
if (use_oneshot && !oneshot_enabled) {
oneshot_enabled = true;
// setup to use a 1Hz frequency, so we only get output when we trigger
hal.rcout->set_freq(mode_out.mask, 1);
hal.rcout->set_output_mode(mode_out.mask, (AP_HAL::RCOutput::output_mode)mode_out.mode);
}
bool use_brushed = mode_out.mode == AP_HAL::RCOutput::MODE_PWM_BRUSHED;
if (use_brushed && !brushed_enabled) {
brushed_enabled = true;
// default to 2kHz for all channels for brushed output
hal.rcout->set_freq(mode_out.mask, 2000);
hal.rcout->set_esc_scaling(1000, 2000);
hal.rcout->set_output_mode(mode_out.mask, AP_HAL::RCOutput::MODE_PWM_BRUSHED);
hal.rcout->set_freq(mode_out.mask, reg_setup.pwm_altrate);
}
}
/*
fill in failsafe PWM values
*/
void AP_IOMCU_FW::fill_failsafe_pwm(void)
{
for (uint8_t i=0; i<IOMCU_MAX_CHANNELS; i++) {
if (reg_status.flag_safety_off) {
reg_direct_pwm.pwm[i] = reg_failsafe_pwm.pwm[i];
} else {
reg_direct_pwm.pwm[i] = 0;
}
}
if (mixing.enabled) {
run_mixer();
}
}
void AP_IOMCU_FW::GPIO_write()
{
for (uint8_t i=0; i<8; i++) {
if ((GPIO.channel_mask & (1U << i)) != 0) {
hal.gpio->write(101+i, (GPIO.output_mask & (1U << i)) != 0);
}
}
}
AP_HAL_MAIN();