Ardupilot2/libraries/AP_HAL_AVR/examples/SPIDriver_MPU6000/SPIDriver_MPU6000.pde

131 lines
3.7 KiB
Plaintext

/*******************************************
* Sample sketch that configures an MPU6000
* and reads back the three axis of accel,
* temperature, three axis of gyro data
*******************************************/
#include <AP_Common.h>
#include <AP_Math.h>
#include <AP_Param.h>
#include <AP_Progmem.h>
#include <AP_HAL.h>
#include <AP_HAL_AVR.h>
/* register #defines */
#include "MPU6000.h"
// debug only:
#include <avr/io.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
const AP_HAL::HAL& hal = AP_HAL_AVR_APM2;
#elif CONFIG_HAL_BOARD == HAL_BOARD_APM1
const AP_HAL::HAL& hal = AP_HAL_AVR_APM1;
#endif
AP_HAL::SPIDeviceDriver* spidev;
static void register_write(uint8_t reg, uint8_t val) {
hal.console->printf_P(PSTR("write reg %d val %d\r\n"),
(int) reg, (int) val);
spidev->cs_assert();
spidev->transfer(reg);
spidev->transfer(val);
spidev->cs_release();
}
static uint8_t register_read(uint8_t reg) {
/* set most significant bit to read register */
uint8_t regaddr = reg | 0x80;
spidev->cs_assert();
spidev->transfer(regaddr);
uint8_t val = spidev->transfer(0);
spidev->cs_release();
return val;
}
static uint16_t spi_read_16(void) {
uint8_t byte_h, byte_l;
byte_h = spidev->transfer(0);
byte_l = spidev->transfer(0);
return (((int16_t) byte_h)<< 8) | byte_l;
}
static void mpu6k_init(void) {
// chip reset
register_write(MPUREG_PWR_MGMT_1, BIT_H_RESET);
hal.scheduler->delay(100);
// Wake up device and select GyroZ clock (better performance)
register_write(MPUREG_PWR_MGMT_1, MPU_CLK_SEL_PLLGYROZ);
hal.scheduler->delay(1);
register_write(MPUREG_PWR_MGMT_2, 0);
hal.scheduler->delay(1);
// Disable I2C bus (recommended on datasheet)
register_write(MPUREG_USER_CTRL, BIT_I2C_IF_DIS);
hal.scheduler->delay(1);
// SAMPLE RATE
//// Sample rate = 200Hz Fsample= 1Khz/(4+1) = 200Hz
register_write(MPUREG_SMPLRT_DIV,0x04);
hal.scheduler->delay(1);
// FS & DLPF FS=2000º/s, DLPF = 98Hz (low pass filter)
register_write(MPUREG_CONFIG, BITS_DLPF_CFG_98HZ);
hal.scheduler->delay(1);
register_write(MPUREG_GYRO_CONFIG,BITS_FS_2000DPS); // Gyro scale 2000º/s
hal.scheduler->delay(1);
// read the product ID rev c has 1/2 the sensitivity of rev d
uint8_t _product_id = register_read(MPUREG_PRODUCT_ID);
//Serial.printf("Product_ID= 0x%x\n", (unsigned) _product_id);
if ((_product_id == MPU6000ES_REV_C4) || (_product_id == MPU6000ES_REV_C5)
||(_product_id == MPU6000_REV_C4) || (_product_id == MPU6000_REV_C5)){
// Accel scale 8g (4096 LSB/g)
// Rev C has different scaling than rev D
register_write(MPUREG_ACCEL_CONFIG,1<<3);
} else {
// Accel scale 8g (4096 LSB/g)
register_write(MPUREG_ACCEL_CONFIG,2<<3);
}
hal.scheduler->delay(1);
// INT CFG => Interrupt on Data Ready
//// INT: Raw data ready
register_write(MPUREG_INT_ENABLE,BIT_RAW_RDY_EN);
hal.scheduler->delay(1);
// INT: Clear on any read
register_write(MPUREG_INT_PIN_CFG,BIT_INT_ANYRD_2CLEAR);
hal.scheduler->delay(1);
}
static void mpu6k_read(int16_t* data) {
spidev->cs_assert();
spidev->transfer( MPUREG_ACCEL_XOUT_H | 0x80 );
for (int i = 0; i < 7; i++) {
data[i] = spi_read_16();
}
spidev->cs_release();
}
static void setup() {
hal.console->printf_P(PSTR("Initializing MPU6000\r\n"));
spidev = hal.spi->device(AP_HAL::SPIDevice_MPU6000);
mpu6k_init();
}
static void loop() {
int16_t sensors[7];
mpu6k_read(sensors);
hal.console->printf_P(PSTR("mpu6k: %d %d %d %d %d %d %d\r\n"),
sensors[0], sensors[1], sensors[2],
sensors[3], sensors[4], sensors[5], sensors[6]);
hal.scheduler->delay(10);
}
AP_HAL_MAIN();