Ardupilot2/ArduCopter/navigation.pde
2013-02-26 11:35:35 +09:00

635 lines
21 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// update_navigation - invokes navigation routines
// called at 10hz
static void update_navigation()
{
static uint32_t nav_last_update = 0; // the system time of the last time nav was run update
// check for inertial nav updates
if( inertial_nav.position_ok() ) {
// calculate time since nav controllers last ran
dTnav = (float)(millis() - nav_last_update)/ 1000.0f;
nav_last_update = millis();
// prevent runnup in dTnav value
dTnav = min(dTnav, 1.0f);
// run the navigation controllers
update_nav_mode();
// update log
if (g.log_bitmask & MASK_LOG_NTUN && motors.armed()) {
Log_Write_Nav_Tuning();
}
}
// To-Do: replace below with proper GPS failsafe
// reduce nav outputs to zero if we have not seen a position update in 2 seconds
if( millis() - nav_last_update > 2000 ) {
// after 12 reads we guess we may have lost GPS signal, stop navigating
// we have lost GPS signal for a moment. Reduce our error to avoid flyaways
auto_roll >>= 1;
auto_pitch >>= 1;
}
}
// run_nav_updates - top level call for the autopilot
// ensures calculations such as "distance to waypoint" are calculated before autopilot makes decisions
// To-Do - rename and move this function to make it's purpose more clear
static void run_nav_updates(void)
{
// fetch position from inertial navigation
calc_position();
// check altitude vs target
verify_altitude();
// calculate distance and bearing for reporting and autopilot decisions
calc_distance_and_bearing();
// run autopilot to make high level decisions about control modes
run_autopilot();
}
// calc_position - get lat and lon positions from inertial nav library
static void calc_position(){
if( inertial_nav.position_ok() ) {
// pull position from interial nav library
current_loc.lng = inertial_nav.get_longitude();
current_loc.lat = inertial_nav.get_latitude();
}
}
// calc_distance_and_bearing - calculate distance and direction to waypoints for reporting and autopilot decisions
static void calc_distance_and_bearing()
{
// get current position
Vector2f curr_pos(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff());
Vector2f dest;
// get target from loiter or wpinav controller
if( nav_mode == NAV_LOITER || nav_mode == NAV_CIRCLE ) {
dest.x = loiter_lat_from_home_cm;
dest.y = loiter_lon_from_home_cm;
}else if( nav_mode == NAV_WP ) {
dest.x = wpinav_destination.x;
dest.y = wpinav_destination.y;
}else{
dest = curr_pos;
}
// calculate distance to target
lat_error = dest.x - curr_pos.x;
lon_error = dest.y - curr_pos.y;
wp_distance = safe_sqrt(lat_error*lat_error+lon_error*lon_error);
// calculate waypoint bearing
// To-Do: change this to more efficient calculation
if( waypoint_valid(next_WP) ) {
wp_bearing = get_bearing_cd(&current_loc, &next_WP);
}else{
wp_bearing = 0;
}
// calculate home distance and bearing
if( ap.home_is_set ) {
home_distance = safe_sqrt(curr_pos.x*curr_pos.x + curr_pos.y*curr_pos.y);
// To-Do: change this to more efficient calculation
home_bearing = get_bearing_cd(&current_loc, &home);
// update super simple bearing (if required) because it relies on home_bearing
update_super_simple_bearing();
}else{
home_distance = 0;
home_bearing = 0;
}
// calculate bearing to target (used when yaw_mode = YAW_LOOK_AT_LOCATION)
// To-Do: move this to the look-at-waypoint yaw controller
if( waypoint_valid(yaw_look_at_WP) ) {
yaw_look_at_WP_bearing = get_bearing_cd(&current_loc, &yaw_look_at_WP);
}
}
// run_autopilot - highest level call to process mission commands
static void run_autopilot()
{
switch( control_mode ) {
case AUTO:
// majority of command logic is in commands_logic.pde
verify_commands();
break;
case GUIDED:
// switch to loiter once we've reached the target location and altitude
if(verify_nav_wp()) {
set_nav_mode(NAV_LOITER);
}
case RTL:
verify_RTL();
break;
}
}
// set_nav_mode - update nav mode and initialise any variables as required
static bool set_nav_mode(uint8_t new_nav_mode)
{
// boolean to ensure proper initialisation of nav modes
bool nav_initialised = false;
// return immediately if no change
if( new_nav_mode == nav_mode ) {
return true;
}
switch( new_nav_mode ) {
case NAV_NONE:
nav_initialised = true;
break;
case NAV_CIRCLE:
// set center of circle to current position
circle_set_center(Vector2f(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff()), ahrs.yaw);
nav_initialised = true;
break;
case NAV_LOITER:
// set target to current position
loiter_set_target(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff());
nav_initialised = true;
break;
case NAV_WP:
nav_initialised = true;
break;
}
// if initialisation has been successful update the yaw mode
if( nav_initialised ) {
nav_mode = new_nav_mode;
}
// return success or failure
return nav_initialised;
}
// update_nav_mode - run navigation controller based on nav_mode
static void update_nav_mode()
{
switch( nav_mode ) {
case NAV_NONE:
// do nothing
break;
case NAV_CIRCLE:
// call circle controller which in turn calls loiter controller
circle_get_pos(dTnav);
break;
case NAV_LOITER:
get_loiter_pos_lat_lon(loiter_lat_from_home_cm, loiter_lon_from_home_cm, 0.1f);
break;
case NAV_WP:
// move forward on the waypoint
// To-Do: slew up the speed to the max waypoint speed instead of immediately jumping to max
wpinav_advance_track_desired(g.waypoint_speed_max, dTnav);
// run the navigation controller
get_wpinav_pos(dTnav);
break;
}
/*
// To-Do: check that we haven't broken toy mode
case TOY_A:
case TOY_M:
set_nav_mode(NAV_NONE);
update_nav_wp();
break;
}
*/
}
static bool check_missed_wp()
{
int32_t temp;
temp = wp_bearing - original_wp_bearing;
temp = wrap_180(temp);
return (labs(temp) > 9000); // we passed the waypoint by 90 degrees
}
static void force_new_altitude(int32_t new_alt)
{
next_WP.alt = new_alt;
set_alt_change(REACHED_ALT);
}
static void set_new_altitude(int32_t new_alt)
{
// if no change exit immediately
if(new_alt == next_WP.alt) {
return;
}
// update new target altitude
next_WP.alt = new_alt;
if(next_WP.alt > (current_loc.alt + 80)) {
// we are below, going up
set_alt_change(ASCENDING);
}else if(next_WP.alt < (current_loc.alt - 80)) {
// we are above, going down
set_alt_change(DESCENDING);
}else{
// No Change
set_alt_change(REACHED_ALT);
}
}
// verify_altitude - check if we have reached the target altitude
static void verify_altitude()
{
if(alt_change_flag == ASCENDING) {
// we are below, going up
if(current_loc.alt > next_WP.alt - 50) {
set_alt_change(REACHED_ALT);
}
}else if (alt_change_flag == DESCENDING) {
// we are above, going down
if(current_loc.alt <= next_WP.alt + 50){
set_alt_change(REACHED_ALT);
}
}
}
// Keeps old data out of our calculation / logs
static void reset_nav_params(void)
{
// We must be heading to a new WP, so XTrack must be 0
crosstrack_error = 0;
// Will be set by new command
wp_bearing = 0;
// Will be set by new command
wp_distance = 0;
// Will be set by nav or loiter controllers
lon_error = 0;
lat_error = 0;
nav_lon = 0;
nav_lat = 0;
nav_roll = 0;
nav_pitch = 0;
auto_roll = 0;
auto_pitch = 0;
}
static int32_t wrap_360(int32_t error)
{
if (error > 36000) error -= 36000;
if (error < 0) error += 36000;
return error;
}
static int32_t wrap_180(int32_t error)
{
if (error > 18000) error -= 36000;
if (error < -18000) error += 36000;
return error;
}
// get_yaw_slew - reduces rate of change of yaw to a maximum
// assumes it is called at 100hz so centi-degrees and update rate cancel each other out
static int32_t get_yaw_slew(int32_t current_yaw, int32_t desired_yaw, int16_t deg_per_sec)
{
return wrap_360(current_yaw + constrain(wrap_180(desired_yaw - current_yaw), -deg_per_sec, deg_per_sec));
}
// valid_waypoint - checks if a waypoint has been initialised or not
static bool waypoint_valid(Location &wp)
{
if( wp.lat != 0 || wp.lng != 0 ) {
return true;
}else{
return false;
}
}
////////////////////////////////////////////////////
// Loiter controller using inertial nav
////////////////////////////////////////////////////
// get_loiter_accel - loiter acceration controllers with desired accelerations provided in forward/right directions in cm/s/s
static void
get_loiter_accel(int16_t accel_req_forward, int16_t accel_req_right)
{
float z_accel_meas = -AP_INTERTIALNAV_GRAVITY * 100; // gravity in cm/s/s
// update angle targets that will be passed to stabilize controller
auto_roll = constrain((accel_req_right/(-z_accel_meas))*(18000/M_PI), -4500, 4500);
auto_pitch = constrain((-accel_req_forward/(-z_accel_meas*cos_roll_x))*(18000/M_PI), -4500, 4500);
}
// get_loiter_accel_lat_lon - loiter acceration controller with desired accelerations provided in lat/lon directions in cm/s/s
static void
get_loiter_accel_lat_lon(int16_t accel_lat, int16_t accel_lon)
{
float accel_forward;
float accel_right;
accel_forward = accel_lat*cos_yaw + accel_lon*sin_yaw;
accel_right = -accel_lat*sin_yaw + accel_lon*cos_yaw;
get_loiter_accel(accel_forward, accel_right);
}
// get_loiter_vel_lat_lon - loiter velocity controller with desired velocity provided in lat/lon directions in cm/s
#define MAX_LOITER_VEL_ACCEL 400 // should be 1.5 times larger than MAX_LOITER_POS_ACCEL
static void
get_loiter_vel_lat_lon(int16_t vel_lat, int16_t vel_lon, float dt)
{
float speed_error_lat = 0; // The velocity in cm/s.
float speed_error_lon = 0; // The velocity in cm/s.
float speed_lat = inertial_nav.get_latitude_velocity();
float speed_lon = inertial_nav.get_longitude_velocity();
int32_t accel_lat;
int32_t accel_lon;
int32_t accel_total;
int16_t lat_p,lat_i,lat_d;
int16_t lon_p,lon_i,lon_d;
// calculate vel error
speed_error_lat = vel_lat - speed_lat;
speed_error_lon = vel_lon - speed_lon;
lat_p = g.pid_loiter_rate_lat.get_p(speed_error_lat);
lat_i = g.pid_loiter_rate_lat.get_i(speed_error_lat, dt);
lat_d = g.pid_loiter_rate_lat.get_d(speed_error_lat, dt);
lon_p = g.pid_loiter_rate_lon.get_p(speed_error_lon);
lon_i = g.pid_loiter_rate_lon.get_i(speed_error_lon, dt);
lon_d = g.pid_loiter_rate_lon.get_d(speed_error_lon, dt);
accel_lat = (lat_p+lat_i+lat_d);
accel_lon = (lon_p+lon_i+lon_d);
accel_total = safe_sqrt(accel_lat*accel_lat + accel_lon*accel_lon);
if( accel_total > MAX_LOITER_VEL_ACCEL ) {
accel_lat = MAX_LOITER_VEL_ACCEL * accel_lat/accel_total;
accel_lon = MAX_LOITER_VEL_ACCEL * accel_lon/accel_total;
}
get_loiter_accel_lat_lon(accel_lat, accel_lon);
}
// get_loiter_pos_lat_lon - loiter position controller with desired position provided as distance from home in lat/lon directions in cm
#define MAX_LOITER_POS_VELOCITY 750 // should be 1.5 ~ 2.0 times the pilot input's max velocity
#define MAX_LOITER_POS_ACCEL 250
static void
get_loiter_pos_lat_lon(int32_t target_lat_from_home, int32_t target_lon_from_home, float dt)
{
float dist_error_lat;
int32_t desired_vel_lat;
float dist_error_lon;
int32_t desired_vel_lon;
int32_t dist_error_total;
int16_t vel_sqrt;
int32_t vel_total;
int16_t linear_distance; // the distace we swap between linear and sqrt.
// calculate distance error
dist_error_lat = target_lat_from_home - inertial_nav.get_latitude_diff();
dist_error_lon = target_lon_from_home - inertial_nav.get_longitude_diff();
linear_distance = MAX_LOITER_POS_ACCEL/(2*g.pi_loiter_lat.kP()*g.pi_loiter_lat.kP());
dist_error_total = safe_sqrt(dist_error_lat*dist_error_lat + dist_error_lon*dist_error_lon);
if( dist_error_total > 2*linear_distance ) {
vel_sqrt = constrain(safe_sqrt(2*MAX_LOITER_POS_ACCEL*(dist_error_total-linear_distance)),0,1000);
desired_vel_lat = vel_sqrt * dist_error_lat/dist_error_total;
desired_vel_lon = vel_sqrt * dist_error_lon/dist_error_total;
}else{
desired_vel_lat = g.pi_loiter_lat.get_p(dist_error_lat);
desired_vel_lon = g.pi_loiter_lon.get_p(dist_error_lon);
}
vel_total = safe_sqrt(desired_vel_lat*desired_vel_lat + desired_vel_lon*desired_vel_lon);
if( vel_total > MAX_LOITER_POS_VELOCITY ) {
desired_vel_lat = MAX_LOITER_POS_VELOCITY * desired_vel_lat/vel_total;
desired_vel_lon = MAX_LOITER_POS_VELOCITY * desired_vel_lon/vel_total;
}
get_loiter_vel_lat_lon(desired_vel_lat, desired_vel_lon, dt);
}
#define MAX_LOITER_POS_VEL_VELOCITY 1000
// loiter_set_pos_from_velocity - loiter velocity controller with desired velocity provided in front/right directions in cm/s
static void
loiter_set_pos_from_velocity(int16_t vel_forward_cms, int16_t vel_right_cms, float dt)
{
int32_t vel_lat;
int32_t vel_lon;
int32_t vel_total;
vel_lat = vel_forward_cms*cos_yaw - vel_right_cms*sin_yaw;
vel_lon = vel_forward_cms*sin_yaw + vel_right_cms*cos_yaw;
// constrain the velocity vector and scale if necessary
vel_total = safe_sqrt(vel_lat*vel_lat + vel_lon*vel_lon);
if( vel_total > MAX_LOITER_POS_VEL_VELOCITY ) {
vel_lat = MAX_LOITER_POS_VEL_VELOCITY * vel_lat/vel_total;
vel_lon = MAX_LOITER_POS_VEL_VELOCITY * vel_lon/vel_total;
}
// update loiter target position
loiter_lat_from_home_cm += vel_lat * dt;
loiter_lon_from_home_cm += vel_lon * dt;
// update next_WP location for reporting purposes
set_next_WP_latlon(
home.lat + loiter_lat_from_home_cm / LATLON_TO_CM,
home.lng + loiter_lat_from_home_cm / LATLON_TO_CM * scaleLongUp);
}
// loiter_set_target - set loiter's target position from home in cm
// To-Do: change this function to accept a target in lat/lon format (and remove setting of next_WP?)
static void
loiter_set_target(float lat_from_home_cm, float lon_from_home_cm)
{
loiter_lat_from_home_cm = lat_from_home_cm;
loiter_lon_from_home_cm = lon_from_home_cm;
// update next_WP location for reporting purposes
set_next_WP_latlon(
home.lat + loiter_lat_from_home_cm / LATLON_TO_CM,
home.lng + loiter_lat_from_home_cm / LATLON_TO_CM * scaleLongUp);
}
//////////////////////////////////////////////////////////
// waypoint inertial navigation controller
//////////////////////////////////////////////////////////
// Waypoint navigation is accomplished by moving the target location up to a maximum of 10m from the current location
// get_wpinav_pos - wpinav position controller with desired position held in wpinav_destination
static void
get_wpinav_pos(float dt)
{
// re-use loiter position controller
get_loiter_pos_lat_lon(wpinav_target.x, wpinav_target.y, dt);
}
// wpinav_set_destination - set destination using lat/lon coordinates
void wpinav_set_destination(const Location& destination)
{
wpinav_set_origin_and_destination(current_loc, destination);
}
// wpinav_set_origin_and_destination - set origin and destination using lat/lon coordinates
void wpinav_set_origin_and_destination(const Location& origin, const Location& destination)
{
wpinav_origin.x = (origin.lat-home.lat) * LATLON_TO_CM;
wpinav_origin.y = (origin.lng-home.lng) * LATLON_TO_CM * scaleLongDown;
wpinav_destination.x = (destination.lat-home.lat) * LATLON_TO_CM;
wpinav_destination.y = (destination.lng-home.lng) * LATLON_TO_CM * scaleLongDown;
wpinav_pos_delta = wpinav_destination - wpinav_origin;
wpinav_track_length = wpinav_pos_delta.length();
wpinav_track_desired = 0;
// set next_WP, prev_WP for reporting purposes
// To-Do: move calcs below to a function
set_next_WP_latlon(
home.lat + wpinav_destination.x / LATLON_TO_CM,
home.lng + wpinav_destination.y / LATLON_TO_CM * scaleLongUp);
}
#define WPINAV_MAX_POS_ERROR 2000.0f // maximum distance (in cm) that the desired track can stray from our current location.
void
wpinav_advance_track_desired(float velocity_cms, float dt)
{
float cross_track_dist;
float track_covered;
float track_desired_max;
float line_a, line_b, line_c, line_m;
// get current location
Vector2f curr(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff());
// check for zero length segment
if( wpinav_pos_delta.x == 0 && wpinav_pos_delta.y == 0) {
wpinav_target = wpinav_destination;
return;
}
if( wpinav_pos_delta.x == 0 ) {
// x is zero
cross_track_dist = fabs(curr.x - wpinav_destination.x);
track_covered = fabs(curr.y - wpinav_origin.y);
}else if(wpinav_pos_delta.y == 0) {
// y is zero
cross_track_dist = fabs(curr.y - wpinav_destination.y);
track_covered = fabs(curr.x - wpinav_origin.x);
}else{
// both x and y non zero
line_a = wpinav_pos_delta.y;
line_b = -wpinav_pos_delta.x;
line_c = wpinav_pos_delta.x * wpinav_origin.y - wpinav_pos_delta.y * wpinav_origin.x;
line_m = line_a / line_b;
cross_track_dist = abs(line_a * curr.x + line_b * curr.y + line_c ) / wpinav_track_length;
line_m = 1/line_m;
line_a = line_m;
line_b = -1;
line_c = curr.y - line_m * curr.x;
// calculate the distance to the closest point along the track and it's distance from the origin
track_covered = abs(line_a*wpinav_origin.x + line_b*wpinav_origin.y + line_c) / safe_sqrt(line_a*line_a+line_b*line_b);
}
// maximum distance along the track that we will allow (stops target point from getting too far from the current position)
track_desired_max = track_covered + safe_sqrt(WPINAV_MAX_POS_ERROR*WPINAV_MAX_POS_ERROR-cross_track_dist*cross_track_dist);
// advance the current target
wpinav_track_desired += velocity_cms * dt;
// constrain the target from moving too far
if( wpinav_track_desired > track_desired_max ) {
wpinav_track_desired = track_desired_max;
}
if( wpinav_track_desired > wpinav_track_length ) {
wpinav_track_desired = wpinav_track_length;
}
// recalculate the desired position
float track_length_pct = wpinav_track_desired/wpinav_track_length;
wpinav_target.x = wpinav_origin.x + wpinav_pos_delta.x * track_length_pct;
wpinav_target.y = wpinav_origin.y + wpinav_pos_delta.y * track_length_pct;
}
//////////////////////////////////////////////////////////
// circle navigation controller
//////////////////////////////////////////////////////////
// circle_set_center -- set circle controller's center position and starting angle
static void
circle_set_center(const Vector2f pos_vec, float heading_in_radians)
{
// set circle center
circle_center = pos_vec;
// set starting angle to current heading - 180 degrees
circle_angle = heading_in_radians-ToRad(180);
if( circle_angle > 180 ) {
circle_angle -= 180;
}
if( circle_angle < -180 ) {
circle_angle -= 180;
}
// initialise other variables
circle_angle_total = 0;
}
// circle_get_pos - circle position controller's main call which in turn calls loiter controller with updated target position
static void
circle_get_pos(float dt)
{
float angle_delta = circle_rate * dt;
float cir_radius = g.circle_radius * 100;
Vector2f circle_target;
// update the target angle
circle_angle += angle_delta;
if( circle_angle > 180 ) {
circle_angle -= 360;
}
if( circle_angle <= -180 ) {
circle_angle += 360;
}
// update the total angle travelled
circle_angle_total += angle_delta;
// calculate target position
circle_target.x = circle_center.x + cir_radius * sinf(1.57f - circle_angle);
circle_target.y = circle_center.y + cir_radius * cosf(1.57f - circle_angle);
// re-use loiter position controller
get_loiter_pos_lat_lon(circle_target.x, circle_target.y, dt);
}