Ardupilot2/ArduCopter/system.cpp
2021-03-23 22:48:20 +11:00

620 lines
20 KiB
C++

#include "Copter.h"
#include <AP_BLHeli/AP_BLHeli.h>
/*****************************************************************************
* The init_ardupilot function processes everything we need for an in - air restart
* We will determine later if we are actually on the ground and process a
* ground start in that case.
*
*****************************************************************************/
static void failsafe_check_static()
{
copter.failsafe_check();
}
void Copter::init_ardupilot()
{
#if STATS_ENABLED == ENABLED
// initialise stats module
g2.stats.init();
#endif
BoardConfig.init();
#if HAL_MAX_CAN_PROTOCOL_DRIVERS
can_mgr.init();
#endif
// init cargo gripper
#if GRIPPER_ENABLED == ENABLED
g2.gripper.init();
#endif
#if AC_FENCE == ENABLED
fence.init();
#endif
// init winch
#if WINCH_ENABLED == ENABLED
g2.winch.init();
#endif
// initialise notify system
notify.init();
notify_flight_mode();
// initialise battery monitor
battery.init();
// Init RSSI
rssi.init();
barometer.init();
// setup telem slots with serial ports
gcs().setup_uarts();
#if OSD_ENABLED == ENABLED
osd.init();
#endif
#if LOGGING_ENABLED == ENABLED
log_init();
#endif
// update motor interlock state
update_using_interlock();
#if FRAME_CONFIG == HELI_FRAME
// trad heli specific initialisation
heli_init();
#endif
#if FRAME_CONFIG == HELI_FRAME
input_manager.set_loop_rate(scheduler.get_loop_rate_hz());
#endif
init_rc_in(); // sets up rc channels from radio
// allocate the motors class
allocate_motors();
// initialise rc channels including setting mode
rc().init();
// sets up motors and output to escs
init_rc_out();
// check if we should enter esc calibration mode
esc_calibration_startup_check();
// motors initialised so parameters can be sent
ap.initialised_params = true;
relay.init();
/*
* setup the 'main loop is dead' check. Note that this relies on
* the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
// Do GPS init
gps.set_log_gps_bit(MASK_LOG_GPS);
gps.init(serial_manager);
AP::compass().set_log_bit(MASK_LOG_COMPASS);
AP::compass().init();
#if OPTFLOW == ENABLED
// make optflow available to AHRS
ahrs.set_optflow(&optflow);
#endif
// init Location class
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
Location::set_terrain(&terrain);
wp_nav->set_terrain(&terrain);
#endif
#if AC_OAPATHPLANNER_ENABLED == ENABLED
g2.oa.init();
#endif
attitude_control->parameter_sanity_check();
pos_control->set_dt(scheduler.get_loop_period_s());
// init the optical flow sensor
init_optflow();
#if HAL_MOUNT_ENABLED
// initialise camera mount
camera_mount.init();
#endif
#if PRECISION_LANDING == ENABLED
// initialise precision landing
init_precland();
#endif
#if LANDING_GEAR_ENABLED == ENABLED
// initialise landing gear position
landinggear.init();
#endif
#ifdef USERHOOK_INIT
USERHOOK_INIT
#endif
#if HIL_MODE != HIL_MODE_DISABLED
while (barometer.get_last_update() == 0) {
// the barometer begins updating when we get the first
// HIL_STATE message
gcs().send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message");
delay(1000);
}
// set INS to HIL mode
ins.set_hil_mode();
#endif
// read Baro pressure at ground
//-----------------------------
barometer.set_log_baro_bit(MASK_LOG_IMU);
barometer.calibrate();
// initialise rangefinder
init_rangefinder();
// init proximity sensor
init_proximity();
#if BEACON_ENABLED == ENABLED
// init beacons used for non-gps position estimation
g2.beacon.init();
#endif
#if RPM_ENABLED == ENABLED
// initialise AP_RPM library
rpm_sensor.init();
#endif
#if MODE_AUTO_ENABLED == ENABLED
// initialise mission library
mode_auto.mission.init();
#endif
#if MODE_SMARTRTL_ENABLED == ENABLED
// initialize SmartRTL
g2.smart_rtl.init();
#endif
// initialise AP_Logger library
logger.setVehicle_Startup_Writer(FUNCTOR_BIND(&copter, &Copter::Log_Write_Vehicle_Startup_Messages, void));
startup_INS_ground();
#ifdef ENABLE_SCRIPTING
g2.scripting.init();
#endif // ENABLE_SCRIPTING
// set landed flags
set_land_complete(true);
set_land_complete_maybe(true);
// we don't want writes to the serial port to cause us to pause
// mid-flight, so set the serial ports non-blocking once we are
// ready to fly
serial_manager.set_blocking_writes_all(false);
// enable CPU failsafe
failsafe_enable();
ins.set_log_raw_bit(MASK_LOG_IMU_RAW);
// enable output to motors
if (arming.rc_calibration_checks(true)) {
enable_motor_output();
}
// attempt to set the intial_mode, else set to STABILIZE
if (!set_mode((enum Mode::Number)g.initial_mode.get(), ModeReason::INITIALISED)) {
// set mode to STABILIZE will trigger mode change notification to pilot
set_mode(Mode::Number::STABILIZE, ModeReason::UNAVAILABLE);
AP_Notify::events.user_mode_change_failed = 1;
}
// flag that initialisation has completed
ap.initialised = true;
}
//******************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//******************************************************************************
void Copter::startup_INS_ground()
{
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
ahrs.init();
ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER);
// Warm up and calibrate gyro offsets
ins.init(scheduler.get_loop_rate_hz());
// reset ahrs including gyro bias
ahrs.reset();
}
// update the harmonic notch filter center frequency dynamically
void Copter::update_dynamic_notch()
{
if (!ins.gyro_harmonic_notch_enabled()) {
return;
}
const float ref_freq = ins.get_gyro_harmonic_notch_center_freq_hz();
const float ref = ins.get_gyro_harmonic_notch_reference();
if (is_zero(ref)) {
ins.update_harmonic_notch_freq_hz(ref_freq);
return;
}
const float throttle_freq = ref_freq * MAX(1.0f, sqrtf(motors->get_throttle_out() / ref));
switch (ins.get_gyro_harmonic_notch_tracking_mode()) {
case HarmonicNotchDynamicMode::UpdateThrottle: // throttle based tracking
// set the harmonic notch filter frequency approximately scaled on motor rpm implied by throttle
ins.update_harmonic_notch_freq_hz(throttle_freq);
break;
#if RPM_ENABLED == ENABLED
case HarmonicNotchDynamicMode::UpdateRPM: // rpm sensor based tracking
float rpm;
if (rpm_sensor.get_rpm(0, rpm)) {
// set the harmonic notch filter frequency from the main rotor rpm
ins.update_harmonic_notch_freq_hz(MAX(ref_freq, rpm * ref / 60.0f));
} else {
ins.update_harmonic_notch_freq_hz(ref_freq);
}
break;
#endif
#ifdef HAVE_AP_BLHELI_SUPPORT
case HarmonicNotchDynamicMode::UpdateBLHeli: // BLHeli based tracking
// set the harmonic notch filter frequency scaled on measured frequency
if (ins.has_harmonic_option(HarmonicNotchFilterParams::Options::DynamicHarmonic)) {
float notches[INS_MAX_NOTCHES];
const uint8_t num_notches = AP_BLHeli::get_singleton()->get_motor_frequencies_hz(INS_MAX_NOTCHES, notches);
for (uint8_t i = 0; i < num_notches; i++) {
notches[i] = MAX(ref_freq, notches[i]);
}
if (num_notches > 0) {
ins.update_harmonic_notch_frequencies_hz(num_notches, notches);
} else { // throttle fallback
ins.update_harmonic_notch_freq_hz(throttle_freq);
}
} else {
ins.update_harmonic_notch_freq_hz(MAX(ref_freq, AP_BLHeli::get_singleton()->get_average_motor_frequency_hz() * ref));
}
break;
#endif
#if HAL_GYROFFT_ENABLED
case HarmonicNotchDynamicMode::UpdateGyroFFT: // FFT based tracking
// set the harmonic notch filter frequency scaled on measured frequency
if (ins.has_harmonic_option(HarmonicNotchFilterParams::Options::DynamicHarmonic)) {
float notches[INS_MAX_NOTCHES];
const uint8_t peaks = gyro_fft.get_weighted_noise_center_frequencies_hz(INS_MAX_NOTCHES, notches);
ins.update_harmonic_notch_frequencies_hz(peaks, notches);
} else {
ins.update_harmonic_notch_freq_hz(gyro_fft.get_weighted_noise_center_freq_hz());
}
break;
#endif
case HarmonicNotchDynamicMode::Fixed: // static
default:
ins.update_harmonic_notch_freq_hz(ref_freq);
break;
}
}
// position_ok - returns true if the horizontal absolute position is ok and home position is set
bool Copter::position_ok() const
{
// return false if ekf failsafe has triggered
if (failsafe.ekf) {
return false;
}
// check ekf position estimate
return (ekf_has_absolute_position() || ekf_has_relative_position());
}
// ekf_has_absolute_position - returns true if the EKF can provide an absolute WGS-84 position estimate
bool Copter::ekf_has_absolute_position() const
{
if (!ahrs.have_inertial_nav()) {
// do not allow navigation with dcm position
return false;
}
// with EKF use filter status and ekf check
nav_filter_status filt_status = inertial_nav.get_filter_status();
// if disarmed we accept a predicted horizontal position
if (!motors->armed()) {
return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs));
} else {
// once armed we require a good absolute position and EKF must not be in const_pos_mode
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode);
}
}
// ekf_has_relative_position - returns true if the EKF can provide a position estimate relative to it's starting position
bool Copter::ekf_has_relative_position() const
{
// return immediately if EKF not used
if (!ahrs.have_inertial_nav()) {
return false;
}
// return immediately if neither optflow nor visual odometry is enabled
bool enabled = false;
#if OPTFLOW == ENABLED
if (optflow.enabled()) {
enabled = true;
}
#endif
#if HAL_VISUALODOM_ENABLED
if (visual_odom.enabled()) {
enabled = true;
}
#endif
if (!enabled) {
return false;
}
// get filter status from EKF
nav_filter_status filt_status = inertial_nav.get_filter_status();
// if disarmed we accept a predicted horizontal relative position
if (!motors->armed()) {
return (filt_status.flags.pred_horiz_pos_rel);
} else {
return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode);
}
}
// returns true if the ekf has a good altitude estimate (required for modes which do AltHold)
bool Copter::ekf_alt_ok() const
{
if (!ahrs.have_inertial_nav()) {
// do not allow alt control with only dcm
return false;
}
// with EKF use filter status and ekf check
nav_filter_status filt_status = inertial_nav.get_filter_status();
// require both vertical velocity and position
return (filt_status.flags.vert_vel && filt_status.flags.vert_pos);
}
// update_auto_armed - update status of auto_armed flag
void Copter::update_auto_armed()
{
// disarm checks
if(ap.auto_armed){
// if motors are disarmed, auto_armed should also be false
if(!motors->armed()) {
set_auto_armed(false);
return;
}
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false
if(flightmode->has_manual_throttle() && ap.throttle_zero && !failsafe.radio) {
set_auto_armed(false);
}
// if helicopters are on the ground, and the motor is switched off, auto-armed should be false
// so that rotor runup is checked again before attempting to take-off
if(ap.land_complete && motors->get_spool_state() != AP_Motors::SpoolState::THROTTLE_UNLIMITED && ap.using_interlock) {
set_auto_armed(false);
}
}else{
// arm checks
// for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true
if(motors->armed() && ap.using_interlock) {
if(!ap.throttle_zero && motors->get_spool_state() == AP_Motors::SpoolState::THROTTLE_UNLIMITED) {
set_auto_armed(true);
}
// if motors are armed and throttle is above zero auto_armed should be true
// if motors are armed and we are in throw mode, then auto_armed should be true
} else if (motors->armed() && !ap.using_interlock) {
if(!ap.throttle_zero || flightmode->mode_number() == Mode::Number::THROW) {
set_auto_armed(true);
}
}
}
}
/*
should we log a message type now?
*/
bool Copter::should_log(uint32_t mask)
{
#if LOGGING_ENABLED == ENABLED
ap.logging_started = logger.logging_started();
return logger.should_log(mask);
#else
return false;
#endif
}
/*
allocate the motors class
*/
void Copter::allocate_motors(void)
{
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) {
#if FRAME_CONFIG != HELI_FRAME
case AP_Motors::MOTOR_FRAME_QUAD:
case AP_Motors::MOTOR_FRAME_HEXA:
case AP_Motors::MOTOR_FRAME_Y6:
case AP_Motors::MOTOR_FRAME_OCTA:
case AP_Motors::MOTOR_FRAME_OCTAQUAD:
case AP_Motors::MOTOR_FRAME_DODECAHEXA:
case AP_Motors::MOTOR_FRAME_DECA:
case AP_Motors::MOTOR_FRAME_SCRIPTING_MATRIX:
default:
motors = new AP_MotorsMatrix(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsMatrix::var_info;
break;
case AP_Motors::MOTOR_FRAME_TRI:
motors = new AP_MotorsTri(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsTri::var_info;
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_TRICOPTER);
break;
case AP_Motors::MOTOR_FRAME_SINGLE:
motors = new AP_MotorsSingle(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsSingle::var_info;
break;
case AP_Motors::MOTOR_FRAME_COAX:
motors = new AP_MotorsCoax(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsCoax::var_info;
break;
case AP_Motors::MOTOR_FRAME_TAILSITTER:
motors = new AP_MotorsTailsitter(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsTailsitter::var_info;
break;
case AP_Motors::MOTOR_FRAME_6DOF_SCRIPTING:
#ifdef ENABLE_SCRIPTING
motors = new AP_MotorsMatrix_6DoF_Scripting(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsMatrix_6DoF_Scripting::var_info;
#endif // ENABLE_SCRIPTING
break;
#else // FRAME_CONFIG == HELI_FRAME
case AP_Motors::MOTOR_FRAME_HELI_DUAL:
motors = new AP_MotorsHeli_Dual(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsHeli_Dual::var_info;
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI);
break;
case AP_Motors::MOTOR_FRAME_HELI_QUAD:
motors = new AP_MotorsHeli_Quad(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsHeli_Quad::var_info;
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI);
break;
case AP_Motors::MOTOR_FRAME_HELI:
default:
motors = new AP_MotorsHeli_Single(copter.scheduler.get_loop_rate_hz());
motors_var_info = AP_MotorsHeli_Single::var_info;
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI);
break;
#endif
}
if (motors == nullptr) {
AP_BoardConfig::config_error("Unable to allocate FRAME_CLASS=%u", (unsigned)g2.frame_class.get());
}
AP_Param::load_object_from_eeprom(motors, motors_var_info);
ahrs_view = ahrs.create_view(ROTATION_NONE);
if (ahrs_view == nullptr) {
AP_BoardConfig::config_error("Unable to allocate AP_AHRS_View");
}
const struct AP_Param::GroupInfo *ac_var_info;
#if FRAME_CONFIG != HELI_FRAME
if ((AP_Motors::motor_frame_class)g2.frame_class.get() == AP_Motors::MOTOR_FRAME_6DOF_SCRIPTING) {
#ifdef ENABLE_SCRIPTING
attitude_control = new AC_AttitudeControl_Multi_6DoF(*ahrs_view, aparm, *motors, scheduler.get_loop_period_s());
ac_var_info = AC_AttitudeControl_Multi_6DoF::var_info;
#endif // ENABLE_SCRIPTING
} else {
attitude_control = new AC_AttitudeControl_Multi(*ahrs_view, aparm, *motors, scheduler.get_loop_period_s());
ac_var_info = AC_AttitudeControl_Multi::var_info;
}
#else
attitude_control = new AC_AttitudeControl_Heli(*ahrs_view, aparm, *motors, scheduler.get_loop_period_s());
ac_var_info = AC_AttitudeControl_Heli::var_info;
#endif
if (attitude_control == nullptr) {
AP_BoardConfig::config_error("Unable to allocate AttitudeControl");
}
AP_Param::load_object_from_eeprom(attitude_control, ac_var_info);
pos_control = new AC_PosControl(*ahrs_view, inertial_nav, *motors, *attitude_control);
if (pos_control == nullptr) {
AP_BoardConfig::config_error("Unable to allocate PosControl");
}
AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info);
#if AC_OAPATHPLANNER_ENABLED == ENABLED
wp_nav = new AC_WPNav_OA(inertial_nav, *ahrs_view, *pos_control, *attitude_control);
#else
wp_nav = new AC_WPNav(inertial_nav, *ahrs_view, *pos_control, *attitude_control);
#endif
if (wp_nav == nullptr) {
AP_BoardConfig::config_error("Unable to allocate WPNav");
}
AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info);
loiter_nav = new AC_Loiter(inertial_nav, *ahrs_view, *pos_control, *attitude_control);
if (loiter_nav == nullptr) {
AP_BoardConfig::config_error("Unable to allocate LoiterNav");
}
AP_Param::load_object_from_eeprom(loiter_nav, loiter_nav->var_info);
#if MODE_CIRCLE_ENABLED == ENABLED
circle_nav = new AC_Circle(inertial_nav, *ahrs_view, *pos_control);
if (circle_nav == nullptr) {
AP_BoardConfig::config_error("Unable to allocate CircleNav");
}
AP_Param::load_object_from_eeprom(circle_nav, circle_nav->var_info);
#endif
// reload lines from the defaults file that may now be accessible
AP_Param::reload_defaults_file(true);
// now setup some frame-class specific defaults
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) {
case AP_Motors::MOTOR_FRAME_Y6:
attitude_control->get_rate_roll_pid().kP().set_default(0.1);
attitude_control->get_rate_roll_pid().kD().set_default(0.006);
attitude_control->get_rate_pitch_pid().kP().set_default(0.1);
attitude_control->get_rate_pitch_pid().kD().set_default(0.006);
attitude_control->get_rate_yaw_pid().kP().set_default(0.15);
attitude_control->get_rate_yaw_pid().kI().set_default(0.015);
break;
case AP_Motors::MOTOR_FRAME_TRI:
attitude_control->get_rate_yaw_pid().filt_D_hz().set_default(100);
break;
default:
break;
}
// brushed 16kHz defaults to 16kHz pulses
if (motors->get_pwm_type() == AP_Motors::PWM_TYPE_BRUSHED) {
g.rc_speed.set_default(16000);
}
// upgrade parameters. This must be done after allocating the objects
convert_pid_parameters();
#if FRAME_CONFIG == HELI_FRAME
convert_tradheli_parameters();
#endif
// param count could have changed
AP_Param::invalidate_count();
}
bool Copter::is_tradheli() const
{
#if FRAME_CONFIG == HELI_FRAME
return true;
#else
return false;
#endif
}