Ardupilot2/libraries/AP_Compass/AP_Compass_Backend.h
Lucas De Marchi 20a4a42cb3 AP_Compass: don't store raw and unfiltered fields
These are not used. The only place where raw fields are used are in the
compass calibrator and we don't need to store them.

Additionally remove duplicated documentation about the meaning of the
functions to avoid them getting out of sync.
2016-03-23 17:50:38 -03:00

80 lines
2.6 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Compass driver backend class. Each supported compass sensor type
needs to have an object derived from this class.
*/
#pragma once
#include "AP_Compass.h"
class Compass; // forward declaration
class AP_Compass_Backend
{
public:
AP_Compass_Backend(Compass &compass);
// we declare a virtual destructor so that drivers can
// override with a custom destructor if need be.
virtual ~AP_Compass_Backend(void) {}
// initialize the magnetometers
virtual bool init(void) = 0;
// read sensor data
virtual void read(void) = 0;
// accumulate a reading from the magnetometer. Optional in
// backends
virtual void accumulate(void) {};
protected:
/*
* A compass measurement is expected to pass through the following functions:
* 1. rotate_field - this rotates the measurement in-place from sensor frame
* to body frame
* 2. publish_raw_field - this provides an uncorrected point-sample for
* calibration libraries
* 3. correct_field - this corrects the measurement in-place for hard iron,
* soft iron, motor interference, and non-orthagonality errors
* 4. publish_filtered_field - legacy filtered magnetic field
*
* All those functions expect the mag field to be in milligauss.
*/
void rotate_field(Vector3f &mag, uint8_t instance);
void publish_raw_field(const Vector3f &mag, uint32_t time_us, uint8_t instance);
void correct_field(Vector3f &mag, uint8_t i);
void publish_filtered_field(const Vector3f &mag, uint8_t instance);
// register a new compass instance with the frontend
uint8_t register_compass(void) const;
// set dev_id for an instance
void set_dev_id(uint8_t instance, uint32_t dev_id);
// set external state for an instance
void set_external(uint8_t instance, bool external);
// access to frontend
Compass &_compass;
private:
void apply_corrections(Vector3f &mag, uint8_t i);
};