Ardupilot2/libraries/AP_HAL_PX4/Scheduler.cpp
2013-01-03 19:34:36 +11:00

193 lines
4.4 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include "AP_HAL_PX4.h"
#include "Scheduler.h"
#include <unistd.h>
#include <stdlib.h>
#include <sched.h>
#include <errno.h>
#include <stdio.h>
#include <drivers/drv_hrt.h>
#include <nuttx/arch.h>
#include <systemlib/systemlib.h>
using namespace PX4;
extern const AP_HAL::HAL& hal;
uint64_t PX4Scheduler::_sketch_start_time;
AP_HAL::TimedProc PX4Scheduler::_failsafe = NULL;
volatile bool PX4Scheduler::_timer_suspended = false;
AP_HAL::TimedProc PX4Scheduler::_timer_proc[PX4_SCHEDULER_MAX_TIMER_PROCS] = {NULL};
uint8_t PX4Scheduler::_num_timer_procs = 0;
bool PX4Scheduler::_in_timer_proc = false;
uint8_t PX4Scheduler::_nested_atomic_ctr;
bool PX4Scheduler::_timer_pending;
PX4Scheduler::PX4Scheduler()
{}
void PX4Scheduler::init(void *unused)
{
_sketch_start_time = hrt_absolute_time();
// setup a 1kHz timer
memset(&_call, 0, sizeof(_call));
hrt_call_every(&_call, 1000, 1000, _timer_event, NULL);
}
uint32_t PX4Scheduler::_micros()
{
return (uint32_t)(hrt_absolute_time() - _sketch_start_time);
}
uint32_t PX4Scheduler::micros()
{
return _micros();
}
uint32_t PX4Scheduler::millis()
{
return hrt_absolute_time() / 1000;
}
void PX4Scheduler::delay_microseconds(uint16_t usec)
{
uint32_t start = micros();
while (micros() - start < usec) {
up_udelay(usec - (micros() - start));
}
}
void PX4Scheduler::delay(uint16_t ms)
{
uint32_t start = micros();
while (ms > 0) {
while ((micros() - start) >= 1000) {
ms--;
if (ms == 0) break;
start += 1000;
}
if (_min_delay_cb_ms <= ms) {
if (_delay_cb) {
_delay_cb();
}
}
}
}
void PX4Scheduler::register_delay_callback(AP_HAL::Proc proc,
uint16_t min_time_ms)
{
_delay_cb = proc;
_min_delay_cb_ms = min_time_ms;
}
void PX4Scheduler::register_timer_process(AP_HAL::TimedProc proc)
{
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs < PX4_SCHEDULER_MAX_TIMER_PROCS) {
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
}
}
void PX4Scheduler::register_timer_failsafe(AP_HAL::TimedProc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void PX4Scheduler::suspend_timer_procs() {
_timer_suspended = true;
}
void PX4Scheduler::resume_timer_procs() {
_timer_suspended = false;
}
void PX4Scheduler::begin_atomic() {
_nested_atomic_ctr++;
}
void PX4Scheduler::end_atomic() {
if (_nested_atomic_ctr == 0) {
hal.uartA->println_P(PSTR("ATOMIC NESTING ERROR"));
return;
}
_nested_atomic_ctr--;
if (_nested_atomic_ctr == 0 && _timer_pending) {
// a timer went off during an atomic operation - run it now
_timer_pending = false;
_timer_event(NULL);
}
}
void PX4Scheduler::reboot()
{
up_systemreset();
}
void PX4Scheduler::_timer_event(void *arg)
{
if (_nested_atomic_ctr != 0) {
_timer_pending = true;
return;
}
uint32_t tnow = _micros();
if (_in_timer_proc) {
// the timer calls took longer than the period of the
// timer. This is bad, and may indicate a serious
// driver failure. We can't just call the drivers
// again, as we could run out of stack. So we only
// call the _failsafe call. It's job is to detect if
// the drivers or the main loop are indeed dead and to
// activate whatever failsafe it thinks may help if
// need be. We assume the failsafe code can't
// block. If it does then we will recurse and die when
// we run out of stack
if (_failsafe != NULL) {
_failsafe(tnow);
}
return;
}
_in_timer_proc = true;
if (!_timer_suspended) {
// now call the timer based drivers
for (int i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] != NULL) {
_timer_proc[i](tnow);
}
}
}
// and the failsafe, if one is setup
if (_failsafe != NULL) {
_failsafe(tnow);
}
_in_timer_proc = false;
}
void PX4Scheduler::panic(const prog_char_t *errormsg) {
hal.console->println_P(errormsg);
hal.scheduler->usleep(10000);
fflush(stdout);
exit(1);
}
#endif