Ardupilot2/libraries/AP_HAL_SITL/HAL_SITL_Class.cpp
Thomas Watson 9044632315 AP_HAL_SITL: eliminate internal legacy UART ordering/references
Legacy command line arguments are kept to avoid breaking users.

The vestigial `_tcp_client_addr` variable is removed.

Serial port status messages are updated to a slightly different format
to clarify the numbering scheme being used and prompt any external
consumers to update.
2023-12-19 06:53:15 +11:00

313 lines
8.2 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <assert.h>
#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include "AP_HAL_SITL.h"
#include "AP_HAL_SITL_Namespace.h"
#include "HAL_SITL_Class.h"
#include "Scheduler.h"
#include "AnalogIn.h"
#include "UARTDriver.h"
#include "I2CDevice.h"
#include "Storage.h"
#include "RCInput.h"
#include "RCOutput.h"
#include "GPIO.h"
#include "SITL_State.h"
#include "Util.h"
#include "DSP.h"
#include "CANSocketIface.h"
#include "SPIDevice.h"
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_HAL_Empty/AP_HAL_Empty.h>
#include <AP_HAL_Empty/AP_HAL_Empty_Private.h>
#include <AP_InternalError/AP_InternalError.h>
#include <AP_Logger/AP_Logger.h>
#include <AP_RCProtocol/AP_RCProtocol_config.h>
using namespace HALSITL;
HAL_SITL& hal_sitl = (HAL_SITL&)AP_HAL::get_HAL_mutable();
static Storage sitlStorage;
static SITL_State sitlState;
static Scheduler sitlScheduler(&sitlState);
#if AP_RCPROTOCOL_ENABLED
static RCInput sitlRCInput(&sitlState);
#else
static Empty::RCInput sitlRCInput;
#endif
static RCOutput sitlRCOutput(&sitlState);
static GPIO sitlGPIO(&sitlState);
static AnalogIn sitlAnalogIn(&sitlState);
static DSP dspDriver;
// use the Empty HAL for hardware we don't emulate
static Empty::OpticalFlow emptyOpticalFlow;
static Empty::Flash emptyFlash;
static UARTDriver sitlSerial0Driver(0, &sitlState);
static UARTDriver sitlSerial1Driver(1, &sitlState);
static UARTDriver sitlSerial2Driver(2, &sitlState);
static UARTDriver sitlSerial3Driver(3, &sitlState);
static UARTDriver sitlSerial4Driver(4, &sitlState);
static UARTDriver sitlSerial5Driver(5, &sitlState);
static UARTDriver sitlSerial6Driver(6, &sitlState);
static UARTDriver sitlSerial7Driver(7, &sitlState);
static UARTDriver sitlSerial8Driver(8, &sitlState);
static UARTDriver sitlSerial9Driver(9, &sitlState);
static I2CDeviceManager i2c_mgr_instance;
#if defined(HAL_BUILD_AP_PERIPH)
static Empty::SPIDeviceManager spi_mgr_instance;
#else
static SPIDeviceManager spi_mgr_instance;
#endif
static Util utilInstance(&sitlState);
#if HAL_NUM_CAN_IFACES
static HALSITL::CANIface* canDrivers[HAL_NUM_CAN_IFACES];
#endif
static Empty::WSPIDeviceManager wspi_mgr_instance;
HAL_SITL::HAL_SITL() :
AP_HAL::HAL(
&sitlSerial0Driver,
&sitlSerial1Driver,
&sitlSerial2Driver,
&sitlSerial3Driver,
&sitlSerial4Driver,
&sitlSerial5Driver,
&sitlSerial6Driver,
&sitlSerial7Driver,
&sitlSerial8Driver,
&sitlSerial9Driver,
&i2c_mgr_instance,
&spi_mgr_instance, /* spi */
&wspi_mgr_instance,
&sitlAnalogIn, /* analogin */
&sitlStorage, /* storage */
&sitlSerial0Driver, /* console */
&sitlGPIO, /* gpio */
&sitlRCInput, /* rcinput */
&sitlRCOutput, /* rcoutput */
&sitlScheduler, /* scheduler */
&utilInstance, /* util */
&emptyOpticalFlow, /* onboard optical flow */
&emptyFlash, /* flash driver */
&dspDriver, /* dsp driver */
#if HAL_NUM_CAN_IFACES
(AP_HAL::CANIface**)canDrivers
#else
nullptr
#endif
), /* CAN */
_sitl_state(&sitlState)
{}
static char *new_argv[100];
/*
save watchdog data
*/
static bool watchdog_save(const uint32_t *data, uint32_t nwords)
{
int fd = ::open("persistent.dat", O_WRONLY|O_CREAT|O_TRUNC, 0644);
bool ret = false;
if (fd != -1) {
if (::write(fd, data, nwords*4) == (ssize_t)(nwords*4)) {
ret = true;
}
::close(fd);
}
return ret;
}
/*
load watchdog data
*/
static bool watchdog_load(uint32_t *data, uint32_t nwords)
{
int fd = ::open("persistent.dat", O_RDONLY, 0644);
bool ret = false;
if (fd != -1) {
ret = (::read(fd, data, nwords*4) == (ssize_t)(nwords*4));
::close(fd);
}
return ret;
}
/*
implement watchdoh reset via SIGALRM
*/
static void sig_alrm(int signum)
{
static char env[] = "SITL_WATCHDOG_RESET=1";
putenv(env);
printf("GOT SIGALRM\n");
execv(new_argv[0], new_argv);
}
void HAL_SITL::exit_signal_handler(int signum)
{
HALSITL::Scheduler::_should_exit = true;
}
void HAL_SITL::setup_signal_handlers() const
{
struct sigaction sa = { };
sa.sa_flags = SA_NOCLDSTOP;
sa.sa_handler = HAL_SITL::exit_signal_handler;
sigaction(SIGTERM, &sa, NULL);
#if defined(HAL_COVERAGE_BUILD) && HAL_COVERAGE_BUILD == 1
sigaction(SIGINT, &sa, NULL);
sigaction(SIGHUP, &sa, NULL);
sigaction(SIGQUIT, &sa, NULL);
#endif
}
/*
fill 8k of stack with NaN. This allows us to find uses of
uninitialised memory without valgrind
*/
static void fill_stack_nan(void)
{
float stk[2048];
fill_nanf(stk, ARRAY_SIZE(stk));
}
uint8_t HAL_SITL::get_instance() const
{
return _sitl_state->get_instance();
}
#if defined(HAL_BUILD_AP_PERIPH)
bool HAL_SITL::run_in_maintenance_mode() const
{
return _sitl_state->run_in_maintenance_mode();
}
#endif
void HAL_SITL::run(int argc, char * const argv[], Callbacks* callbacks) const
{
assert(callbacks);
utilInstance.init(argc, argv);
_sitl_state->init(argc, argv);
scheduler->init();
serial(0)->begin(115200);
rcin->init();
rcout->init();
// spi->init();
analogin->init();
if (getenv("SITL_WATCHDOG_RESET")) {
INTERNAL_ERROR(AP_InternalError::error_t::watchdog_reset);
if (watchdog_load((uint32_t *)&utilInstance.persistent_data, (sizeof(utilInstance.persistent_data)+3)/4)) {
serial(0)->printf("Loaded watchdog data");
utilInstance.last_persistent_data = utilInstance.persistent_data;
}
}
// form a new argv, removing problem parameters. This is used for reboot
uint8_t new_argv_offset = 0;
for (uint8_t i=0; i<ARRAY_SIZE(new_argv) && i<argc; i++) {
if (!strcmp(argv[i], "-w")) {
// don't wipe params on reboot
continue;
}
new_argv[new_argv_offset++] = argv[i];
}
fill_stack_nan();
callbacks->setup();
scheduler->set_system_initialized();
#if HAL_LOGGING_ENABLED
if (getenv("SITL_WATCHDOG_RESET")) {
const AP_HAL::Util::PersistentData &pd = util->persistent_data;
AP::logger().WriteCritical("WDOG", "TimeUS,Task,IErr,IErrCnt,IErrLn,MavMsg,MavCmd,SemLine", "QbIHHHHH",
AP_HAL::micros64(),
pd.scheduler_task,
pd.internal_errors,
pd.internal_error_count,
pd.internal_error_last_line,
pd.last_mavlink_msgid,
pd.last_mavlink_cmd,
pd.semaphore_line);
}
#endif
bool using_watchdog = AP_BoardConfig::watchdog_enabled();
if (using_watchdog) {
signal(SIGALRM, sig_alrm);
alarm(2);
}
setup_signal_handlers();
uint32_t last_watchdog_save = AP_HAL::millis();
uint8_t fill_count = 0;
while (true) {
if (HALSITL::Scheduler::_should_exit) {
::fprintf(stderr, "Exitting\n");
exit(0);
}
if (fill_count++ % 10 == 0) {
// only fill every 10 loops. This still gives us a lot of
// protection, but saves a lot of CPU
fill_count = 1u;
fill_stack_nan();
}
callbacks->loop();
HALSITL::Scheduler::_run_io_procs();
uint32_t now = AP_HAL::millis();
if (now - last_watchdog_save >= 100 && using_watchdog) {
// save persistent data every 100ms
last_watchdog_save = now;
watchdog_save((uint32_t *)&utilInstance.persistent_data, (sizeof(utilInstance.persistent_data)+3)/4);
}
if (using_watchdog) {
// note that this only works for a speedup of 1
alarm(2);
}
}
actually_reboot();
}
void HAL_SITL::actually_reboot()
{
execv(new_argv[0], new_argv);
AP_HAL::panic("PANIC: REBOOT FAILED: %s", strerror(errno));
}
static HAL_SITL hal_sitl_inst;
const AP_HAL::HAL& AP_HAL::get_HAL() {
return hal_sitl_inst;
}
AP_HAL::HAL& AP_HAL::get_HAL_mutable() {
return hal_sitl_inst;
}
#endif // CONFIG_HAL_BOARD == HAL_BOARD_SITL