Ardupilot2/libraries/AP_Compass/AP_Compass_UAVCAN.cpp
Lucas De Marchi 93d99dacd1 AP_Compass: UAVCAN: remove additional semaphore
We already inherit from AP_Compass_Backend, so use the semaphore from
there to synchronize with the main thread, like the other backends.
2018-09-06 08:23:02 +10:00

248 lines
7.8 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#if HAL_WITH_UAVCAN
#include "AP_Compass_UAVCAN.h"
#include <AP_BoardConfig/AP_BoardConfig_CAN.h>
#include <AP_Common/Semaphore.h>
#include <AP_UAVCAN/AP_UAVCAN.h>
#include <uavcan/equipment/ahrs/MagneticFieldStrength.hpp>
#include <uavcan/equipment/ahrs/MagneticFieldStrength2.hpp>
extern const AP_HAL::HAL& hal;
#define debug_mag_uavcan(level_debug, can_driver, fmt, args...) do { if ((level_debug) <= AP::can().get_debug_level_driver(can_driver)) { printf(fmt, ##args); }} while (0)
// Frontend Registry Binders
UC_REGISTRY_BINDER(MagCb, uavcan::equipment::ahrs::MagneticFieldStrength);
UC_REGISTRY_BINDER(Mag2Cb, uavcan::equipment::ahrs::MagneticFieldStrength2);
AP_Compass_UAVCAN::DetectedModules AP_Compass_UAVCAN::_detected_modules[] = {0};
AP_HAL::Semaphore* AP_Compass_UAVCAN::_sem_registry = nullptr;
AP_Compass_UAVCAN::AP_Compass_UAVCAN(AP_UAVCAN* ap_uavcan, uint8_t node_id, uint8_t sensor_id)
: _ap_uavcan(ap_uavcan)
, _node_id(node_id)
, _sensor_id(sensor_id)
{
}
void AP_Compass_UAVCAN::subscribe_msgs(AP_UAVCAN* ap_uavcan)
{
if (ap_uavcan == nullptr) {
return;
}
auto* node = ap_uavcan->get_node();
uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength, MagCb> *mag_listener;
mag_listener = new uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength, MagCb>(*node);
const int mag_listener_res = mag_listener->start(MagCb(ap_uavcan, &handle_magnetic_field));
if (mag_listener_res < 0) {
AP_HAL::panic("UAVCAN Mag subscriber start problem\n\r");
return;
}
uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength2, Mag2Cb> *mag2_listener;
mag2_listener = new uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength2, Mag2Cb>(*node);
const int mag2_listener_res = mag2_listener->start(Mag2Cb(ap_uavcan, &handle_magnetic_field_2));
if (mag2_listener_res < 0) {
AP_HAL::panic("UAVCAN Mag subscriber start problem\n\r");
return;
}
}
bool AP_Compass_UAVCAN::take_registry()
{
if (_sem_registry == nullptr) {
_sem_registry = hal.util->new_semaphore();
}
return _sem_registry->take(HAL_SEMAPHORE_BLOCK_FOREVER);
}
void AP_Compass_UAVCAN::give_registry()
{
_sem_registry->give();
}
AP_Compass_Backend* AP_Compass_UAVCAN::probe()
{
if (!take_registry()) {
return nullptr;
}
AP_Compass_UAVCAN* driver = nullptr;
for (uint8_t i = 0; i < COMPASS_MAX_BACKEND; i++) {
if (!_detected_modules[i].driver && _detected_modules[i].ap_uavcan) {
// Register new Compass mode to a backend
driver = new AP_Compass_UAVCAN(_detected_modules[i].ap_uavcan, _detected_modules[i].node_id, _detected_modules[i].sensor_id);
if (driver) {
_detected_modules[i].driver = driver;
driver->init();
debug_mag_uavcan(2,
_detected_modules[i].ap_uavcan->get_driver_index(),
"Found Mag Node %d on Bus %d Sensor ID %d\n",
_detected_modules[i].node_id,
_detected_modules[i].ap_uavcan->get_driver_index(),
_detected_modules[i].sensor_id);
}
break;
}
}
give_registry();
return driver;
}
void AP_Compass_UAVCAN::init()
{
_instance = register_compass();
struct DeviceStructure {
uint8_t bus_type : 3;
uint8_t bus: 5;
uint8_t address;
uint8_t devtype;
};
union DeviceId {
struct DeviceStructure devid_s;
uint32_t devid;
};
union DeviceId d;
d.devid_s.bus_type = 3;
d.devid_s.bus = _ap_uavcan->get_driver_index();
d.devid_s.address = _node_id;
d.devid_s.devtype = 1;
set_dev_id(_instance, d.devid);
set_external(_instance, true);
_sum.zero();
_count = 0;
debug_mag_uavcan(2, _ap_uavcan->get_driver_index(), "AP_Compass_UAVCAN loaded\n\r");
}
AP_Compass_UAVCAN* AP_Compass_UAVCAN::get_uavcan_backend(AP_UAVCAN* ap_uavcan, uint8_t node_id, uint8_t sensor_id)
{
if (ap_uavcan == nullptr) {
return nullptr;
}
for (uint8_t i=0; i<COMPASS_MAX_BACKEND; i++) {
if (_detected_modules[i].driver &&
_detected_modules[i].ap_uavcan == ap_uavcan &&
_detected_modules[i].node_id == node_id &&
_detected_modules[i].sensor_id == sensor_id) {
return _detected_modules[i].driver;
}
}
bool already_detected = false;
// Check if there's an empty spot for possible registeration
for (uint8_t i = 0; i < COMPASS_MAX_BACKEND; i++) {
if (_detected_modules[i].ap_uavcan == ap_uavcan &&
_detected_modules[i].node_id == node_id &&
_detected_modules[i].sensor_id == sensor_id) {
// Already Detected
already_detected = true;
break;
}
}
if (!already_detected) {
for (uint8_t i = 0; i < COMPASS_MAX_BACKEND; i++) {
if (nullptr == _detected_modules[i].ap_uavcan) {
_detected_modules[i].ap_uavcan = ap_uavcan;
_detected_modules[i].node_id = node_id;
_detected_modules[i].sensor_id = sensor_id;
break;
}
}
}
return nullptr;
}
void AP_Compass_UAVCAN::handle_mag_msg(const Vector3f &mag)
{
Vector3f raw_field = mag * 1000.0;
// rotate raw_field from sensor frame to body frame
rotate_field(raw_field, _instance);
// publish raw_field (uncorrected point sample) for calibration use
publish_raw_field(raw_field, _instance);
// correct raw_field for known errors
correct_field(raw_field, _instance);
WITH_SEMAPHORE(_sem);
// accumulate into averaging filter
_sum += raw_field;
_count++;
}
void AP_Compass_UAVCAN::handle_magnetic_field(AP_UAVCAN* ap_uavcan, uint8_t node_id, const MagCb &cb)
{
if (take_registry()) {
Vector3f mag_vector;
AP_Compass_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, 0);
if (driver != nullptr) {
mag_vector[0] = cb.msg->magnetic_field_ga[0];
mag_vector[1] = cb.msg->magnetic_field_ga[1];
mag_vector[2] = cb.msg->magnetic_field_ga[2];
driver->handle_mag_msg(mag_vector);
}
give_registry();
}
}
void AP_Compass_UAVCAN::handle_magnetic_field_2(AP_UAVCAN* ap_uavcan, uint8_t node_id, const Mag2Cb &cb)
{
if (take_registry()) {
Vector3f mag_vector;
uint8_t sensor_id = cb.msg->sensor_id;
AP_Compass_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, sensor_id);
if (driver != nullptr) {
mag_vector[0] = cb.msg->magnetic_field_ga[0];
mag_vector[1] = cb.msg->magnetic_field_ga[1];
mag_vector[2] = cb.msg->magnetic_field_ga[2];
driver->handle_mag_msg(mag_vector);
}
give_registry();
}
}
void AP_Compass_UAVCAN::read(void)
{
// avoid division by zero if we haven't received any mag reports
if (_count == 0) {
return;
}
WITH_SEMAPHORE(_sem);
_sum /= _count;
publish_filtered_field(_sum, _instance);
_sum.zero();
_count = 0;
}
#endif