Ardupilot2/libraries/AP_InertialSensor/AP_InertialSensor_Logging.cpp
2023-04-21 09:48:45 +10:00

191 lines
7.0 KiB
C++

#include "AP_InertialSensor.h"
#include "AP_InertialSensor_Backend.h"
#include <AP_Logger/AP_Logger.h>
// Write ACC data packet: raw accel data
void AP_InertialSensor_Backend::Write_ACC(const uint8_t instance, const uint64_t sample_us, const Vector3f &accel) const
{
const uint64_t now = AP_HAL::micros64();
const struct log_ACC pkt {
LOG_PACKET_HEADER_INIT(LOG_ACC_MSG),
time_us : now,
instance : instance,
sample_us : sample_us?sample_us:now,
AccX : accel.x,
AccY : accel.y,
AccZ : accel.z
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
// Write GYR data packet: raw gyro data
void AP_InertialSensor_Backend::Write_GYR(const uint8_t instance, const uint64_t sample_us, const Vector3f &gyro) const
{
const uint64_t now = AP_HAL::micros64();
const struct log_GYR pkt{
LOG_PACKET_HEADER_INIT(LOG_GYR_MSG),
time_us : now,
instance : instance,
sample_us : sample_us?sample_us:now,
GyrX : gyro.x,
GyrY : gyro.y,
GyrZ : gyro.z
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
// Write IMU data packet: raw accel/gyro data
void AP_InertialSensor::Write_IMU_instance(const uint64_t time_us, const uint8_t imu_instance) const
{
const Vector3f &gyro = get_gyro(imu_instance);
const Vector3f &accel = get_accel(imu_instance);
const struct log_IMU pkt{
LOG_PACKET_HEADER_INIT(LOG_IMU_MSG),
time_us : time_us,
instance: imu_instance,
gyro_x : gyro.x,
gyro_y : gyro.y,
gyro_z : gyro.z,
accel_x : accel.x,
accel_y : accel.y,
accel_z : accel.z,
gyro_error : _gyro_error_count[imu_instance],
accel_error : _accel_error_count[imu_instance],
temperature : get_temperature(imu_instance),
gyro_health : (uint8_t)get_gyro_health(imu_instance),
accel_health : (uint8_t)get_accel_health(imu_instance),
gyro_rate : get_gyro_rate_hz(imu_instance),
accel_rate : get_accel_rate_hz(imu_instance),
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
// Write IMU data packet for all instances
void AP_InertialSensor::Write_IMU() const
{
const uint64_t time_us = AP_HAL::micros64();
uint8_t n = MAX(get_accel_count(), get_gyro_count());
for (uint8_t i=0; i<n; i++) {
Write_IMU_instance(time_us, i);
}
}
// Write VIBE data packet for all instances
void AP_InertialSensor::Write_Vibration() const
{
const uint64_t time_us = AP_HAL::micros64();
for (uint8_t i = 0; i < INS_MAX_INSTANCES; i++) {
if (!use_accel(i)) {
continue;
}
const Vector3f vibration = get_vibration_levels(i);
const struct log_Vibe pkt{
LOG_PACKET_HEADER_INIT(LOG_VIBE_MSG),
time_us : time_us,
imu : i,
vibe_x : vibration.x,
vibe_y : vibration.y,
vibe_z : vibration.z,
clipping : get_accel_clip_count(i)
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
}
#if AP_INERTIALSENSOR_BATCHSAMPLER_ENABLED
// Write information about a series of IMU readings to log:
bool AP_InertialSensor::BatchSampler::Write_ISBH(const float sample_rate_hz) const
{
uint8_t instance_to_write = instance;
if (post_filter && (_doing_pre_post_filter_logging
|| (_doing_post_filter_logging && _doing_sensor_rate_logging))) {
instance_to_write += (type == IMU_SENSOR_TYPE_ACCEL ? _imu._accel_count : _imu._gyro_count);
}
const struct log_ISBH pkt{
LOG_PACKET_HEADER_INIT(LOG_ISBH_MSG),
time_us : AP_HAL::micros64(),
seqno : isb_seqnum,
sensor_type : (uint8_t)type,
instance : instance_to_write,
multiplier : multiplier,
sample_count : (uint16_t)_real_required_count,
sample_us : measurement_started_us,
sample_rate_hz : sample_rate_hz,
};
return AP::logger().WriteBlock_first_succeed(&pkt, sizeof(pkt));
}
// Write a series of IMU readings to log:
bool AP_InertialSensor::BatchSampler::Write_ISBD() const
{
struct log_ISBD pkt = {
LOG_PACKET_HEADER_INIT(LOG_ISBD_MSG),
time_us : AP_HAL::micros64(),
isb_seqno : isb_seqnum,
seqno : (uint16_t) (data_read_offset/samples_per_msg)
};
memcpy(pkt.x, &data_x[data_read_offset], sizeof(pkt.x));
memcpy(pkt.y, &data_y[data_read_offset], sizeof(pkt.y));
memcpy(pkt.z, &data_z[data_read_offset], sizeof(pkt.z));
return AP::logger().WriteBlock_first_succeed(&pkt, sizeof(pkt));
}
#endif
// @LoggerMessage: FTN
// @Description: Filter Tuning Message - per motor
// @Field: TimeUS: microseconds since system startup
// @Field: I: instance
// @Field: NDn: number of active dynamic harmonic notches
// @Field: NF1: dynamic harmonic notch centre frequency for motor 1
// @Field: NF2: dynamic harmonic notch centre frequency for motor 2
// @Field: NF3: dynamic harmonic notch centre frequency for motor 3
// @Field: NF4: dynamic harmonic notch centre frequency for motor 4
// @Field: NF5: dynamic harmonic notch centre frequency for motor 5
// @Field: NF6: dynamic harmonic notch centre frequency for motor 6
// @Field: NF7: dynamic harmonic notch centre frequency for motor 7
// @Field: NF8: dynamic harmonic notch centre frequency for motor 8
// @Field: NF9: dynamic harmonic notch centre frequency for motor 9
// @Field: NF10: dynamic harmonic notch centre frequency for motor 10
// @Field: NF11: dynamic harmonic notch centre frequency for motor 11
// @Field: NF12: dynamic harmonic notch centre frequency for motor 12
// @LoggerMessage: FTNS
// @Description: Filter Tuning Message
// @Field: TimeUS: microseconds since system startup
// @Field: I: instance
// @Field: NF: dynamic harmonic notch centre frequency
void AP_InertialSensor::write_notch_log_messages() const
{
for (auto &notch : harmonic_notches) {
const uint8_t i = &notch - &harmonic_notches[0];
if (!notch.params.enabled()) {
continue;
}
const float* notches = notch.calculated_notch_freq_hz;
if (notch.num_calculated_notch_frequencies > 1) {
// log per motor center frequencies
AP::logger().WriteStreaming(
"FTN", "TimeUS,I,NDn,NF1,NF2,NF3,NF4,NF5,NF6,NF7,NF8,NF9,NF10,NF11,NF12", "s#-zzzzzzzzzzzz", "F--------------", "QBBffffffffffff",
AP_HAL::micros64(),
i,
notch.num_calculated_notch_frequencies,
notches[0], notches[1], notches[2], notches[3],
notches[4], notches[5], notches[6], notches[7],
notches[8], notches[9], notches[10], notches[11]);
} else {
// log single center frequency
AP::logger().WriteStreaming(
"FTNS", "TimeUS,I,NF", "s#z", "F--", "QBf",
AP_HAL::micros64(),
i,
notches[0]);
}
}
}