Ardupilot2/libraries/AP_InertialSensor/AP_InertialSensor_Flymaple.cpp

232 lines
7.7 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Flymaple port by Mike McCauley
*/
// Interface to the Flymaple sensors:
// ITG3205 Gyroscope
// ADXL345 Accelerometer
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_FLYMAPLE
#include "AP_InertialSensor_Flymaple.h"
const extern AP_HAL::HAL& hal;
Vector3f AP_InertialSensor_Flymaple::_accel_sum;
uint32_t AP_InertialSensor_Flymaple::_accel_sum_count;
Vector3f AP_InertialSensor_Flymaple::_gyro_sum;
uint32_t AP_InertialSensor_Flymaple::_gyro_sum_count;
volatile bool AP_InertialSensor_Flymaple::_in_accumulate;
uint64_t AP_InertialSensor_Flymaple::_last_accel_timestamp;
uint64_t AP_InertialSensor_Flymaple::_last_gyro_timestamp;
int AP_InertialSensor_Flymaple::_accel_fd;
int AP_InertialSensor_Flymaple::_gyro_fd;
///////
/// Accelerometer ADXL345 definitions
#define FLYMAPLE_ACCELEROMETER_ADDRESS 0x53
#define FLYMAPLE_ACCELEROMETER_XL345_DEVID 0xe5
#define FLYMAPLE_ACCELEROMETER_ADXLREG_BW_RATE 0x2c
#define FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL 0x2d
#define FLYMAPLE_ACCELEROMETER_ADXLREG_DATA_FORMAT 0x31
#define FLYMAPLE_ACCELEROMETER_ADXLREG_DEVID 0x00
#define FLYMAPLE_ACCELEROMETER_ADXLREG_DATAX0 0x32
#define FLYMAPLE_ACCELEROMETER_GRAVITY 248
/// Gyro ITG3205 definitions
#define FLYMAPLE_GYRO_ADDRESS 0x68
#define FLYMAPLE_GYRO_PWR_MGM 0x3e
#define FLYMAPLE_GYRO_DLPF_FS 0x16
#define FLYMAPLE_GYRO_INT_CFG 0x17
#define FLYMAPLE_GYRO_SMPLRT_DIV 0x15
#define FLYMAPLE_GYRO_GYROX_H 0x1d
uint16_t AP_InertialSensor_Flymaple::_init_sensor( Sample_rate sample_rate )
{
switch (sample_rate) {
case RATE_50HZ:
_sample_divider = 4;
_default_filter_hz = 10;
break;
case RATE_100HZ:
_sample_divider = 2;
_default_filter_hz = 20;
break;
case RATE_200HZ:
default:
_sample_divider = 1;
_default_filter_hz = 20;
break;
}
// Init the accelerometer
uint8_t data;
hal.i2c->readRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DEVID, &data);
if (data != FLYMAPLE_ACCELEROMETER_XL345_DEVID)
hal.scheduler->panic(PSTR("AP_InertialSensor_Flymaple: could not find ADXL345 accelerometer sensor"));
hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0x00);
hal.scheduler->delay(5);
hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0xff);
hal.scheduler->delay(5);
hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0x08);
hal.scheduler->delay(5);
hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DATA_FORMAT, 0x08);
hal.scheduler->delay(5);
hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_BW_RATE, 0x09);
hal.scheduler->delay(5);
/// Init the Gyro
hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_PWR_MGM, 0x00);
hal.scheduler->delay(1);
hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_SMPLRT_DIV, 0x07);
hal.scheduler->delay(1);
hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_DLPF_FS,0x1e);
hal.scheduler->delay(1);
hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_INT_CFG, 0x00);
hal.scheduler->delay(1);
return AP_PRODUCT_ID_FLYMAPLE;
}
/*
set the filter frequency
*/
void AP_InertialSensor_Flymaple::_set_filter_frequency(uint8_t filter_hz)
{
if (filter_hz == 0) {
filter_hz = _default_filter_hz;
}
/// TODO ...
}
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
bool AP_InertialSensor_Flymaple::update(void)
{
while (num_samples_available() == 0) {
hal.scheduler->delay(1);
}
Vector3f accel_scale = _accel_scale.get();
hal.scheduler->suspend_timer_procs();
// base the time on the gyro timestamp, as that is what is
// multiplied by time to integrate in DCM
_delta_time = (_last_gyro_timestamp - _last_update_usec) * 1.0e-6f;
_last_update_usec = _last_gyro_timestamp;
_accel = _accel_sum / _accel_sum_count;
_accel_sum.zero();
_accel_sum_count = 0;
_gyro = _gyro_sum / _gyro_sum_count;
_gyro_sum.zero();
_gyro_sum_count = 0;
hal.scheduler->resume_timer_procs();
// add offsets and rotation
_accel.rotate(_board_orientation);
_accel.x *= accel_scale.x;
_accel.y *= accel_scale.y;
_accel.z *= accel_scale.z;
_accel -= _accel_offset;
_gyro.rotate(_board_orientation);
_gyro *= (1.0 / 14.375) * (3.1415926 / 180); // ITG3200 14.375 LSB degrees/sec with FS_SEL=3
_gyro -= _gyro_offset;
#if 0
// whats this all about????
if (_last_filter_hz != _mpu6000_filter) {
_set_filter_frequency(_mpu6000_filter);
_last_filter_hz = _mpu6000_filter;
}
#endif
return true;
}
float AP_InertialSensor_Flymaple::get_delta_time(void)
{
return _delta_time;
}
uint32_t AP_InertialSensor_Flymaple::get_last_sample_time_micros(void)
{
return _last_update_usec;
}
float AP_InertialSensor_Flymaple::get_gyro_drift_rate(void)
{
// 0.5 degrees/second/minute
return ToRad(0.5/60);
}
void AP_InertialSensor_Flymaple::_accumulate(void)
{
if (_in_accumulate) {
return;
}
_in_accumulate = true;
// Read accelerometer
uint8_t buffer[8];
if (hal.i2c->readRegisters(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DATAX0, 8, buffer) == 0)
{
// The order is a bit wierd here since the standard we have adopted for Flymaple
// sensor orientation is different to what the board designers intended
// Caution, to support alternative chip orientations on other bords, may
// need to add a chip orientation rotate
int16_t y = ((((int16_t)buffer[1]) << 8) | buffer[0]); // chip X axis
int16_t x = (((int16_t)buffer[3]) << 8) | buffer[2]; // chip Y axis
int16_t z = -((((int16_t)buffer[5]) << 8) | buffer[4]); // chip Z axis
_accel_sum += Vector3f(x, y, z);
_accel_sum_count++;
_last_accel_timestamp = hal.scheduler->micros();
}
// Read gyro
if (hal.i2c->readRegisters(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_GYROX_H, 6, buffer) == 0)
{
int16_t y = -(((int16_t)buffer[0]) << 8) | buffer[1]; // chip X axis
int16_t x = -(((int16_t)buffer[2]) << 8) | buffer[3]; // chip Y axis
int16_t z = -((((int16_t)buffer[4]) << 8) | buffer[5]); // chip Z axis
_gyro_sum += Vector3f(x, y, z);
_gyro_sum_count++;
_last_gyro_timestamp = hal.scheduler->micros();
}
_in_accumulate = false;
}
void AP_InertialSensor_Flymaple::_ins_timer(uint32_t now)
{
_accumulate();
}
uint16_t AP_InertialSensor_Flymaple::num_samples_available(void)
{
_accumulate();
return min(_accel_sum_count, _gyro_sum_count) / _sample_divider;
}
#endif // CONFIG_HAL_BOARD