379 lines
14 KiB
C++
379 lines
14 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#ifndef __AP_INERTIAL_SENSOR_H__
|
|
#define __AP_INERTIAL_SENSOR_H__
|
|
|
|
// Gyro and Accelerometer calibration criteria
|
|
#define AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE 4.0f
|
|
#define AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET 250.0f
|
|
#define AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS (15.5f*GRAVITY_MSS) // accelerometer values over 15.5G are recorded as a clipping error
|
|
#define AP_INERTIAL_SENSOR_ACCEL_VIBE_FLOOR_FILT_HZ 5.0f // accel vibration floor filter hz
|
|
#define AP_INERTIAL_SENSOR_ACCEL_VIBE_FILT_HZ 2.0f // accel vibration filter hz
|
|
|
|
/**
|
|
maximum number of INS instances available on this platform. If more
|
|
than 1 then redundent sensors may be available
|
|
*/
|
|
#if HAL_CPU_CLASS > HAL_CPU_CLASS_16
|
|
#define INS_MAX_INSTANCES 3
|
|
#define INS_MAX_BACKENDS 6
|
|
#define INS_VIBRATION_CHECK 1
|
|
#define INS_VIBRATION_CHECK_INSTANCES 2
|
|
#else
|
|
#define INS_MAX_INSTANCES 1
|
|
#define INS_MAX_BACKENDS 1
|
|
#define INS_VIBRATION_CHECK 0
|
|
#endif
|
|
|
|
|
|
#include <stdint.h>
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
#include "AP_InertialSensor_UserInteract.h"
|
|
#include <Filter/LowPassFilter.h>
|
|
|
|
class AP_InertialSensor_Backend;
|
|
|
|
/*
|
|
forward declare DataFlash class. We can't include DataFlash.h
|
|
because of mutual dependencies
|
|
*/
|
|
class DataFlash_Class;
|
|
|
|
/* AP_InertialSensor is an abstraction for gyro and accel measurements
|
|
* which are correctly aligned to the body axes and scaled to SI units.
|
|
*
|
|
* Gauss-Newton accel calibration routines borrowed from Rolfe Schmidt
|
|
* blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
|
|
* original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
|
|
*/
|
|
class AP_InertialSensor
|
|
{
|
|
friend class AP_InertialSensor_Backend;
|
|
|
|
public:
|
|
AP_InertialSensor();
|
|
|
|
enum Start_style {
|
|
COLD_START = 0,
|
|
WARM_START
|
|
};
|
|
|
|
// the rate that updates will be available to the application
|
|
enum Sample_rate {
|
|
RATE_50HZ = 50,
|
|
RATE_100HZ = 100,
|
|
RATE_200HZ = 200,
|
|
RATE_400HZ = 400
|
|
};
|
|
|
|
/// Perform startup initialisation.
|
|
///
|
|
/// Called to initialise the state of the IMU.
|
|
///
|
|
/// For COLD_START, implementations using real sensors can assume
|
|
/// that the airframe is stationary and nominally oriented.
|
|
///
|
|
/// For WARM_START, no assumptions should be made about the
|
|
/// orientation or motion of the airframe. Calibration should be
|
|
/// as for the previous COLD_START call.
|
|
///
|
|
/// @param style The initialisation startup style.
|
|
///
|
|
void init( Start_style style,
|
|
Sample_rate sample_rate);
|
|
|
|
/// Register a new gyro/accel driver, allocating an instance
|
|
/// number
|
|
uint8_t register_gyro(void);
|
|
uint8_t register_accel(void);
|
|
|
|
// perform accelerometer calibration including providing user instructions
|
|
// and feedback
|
|
bool calibrate_accel(AP_InertialSensor_UserInteract *interact,
|
|
float& trim_roll,
|
|
float& trim_pitch);
|
|
bool calibrate_trim(float &trim_roll, float &trim_pitch);
|
|
|
|
/// calibrating - returns true if the gyros or accels are currently being calibrated
|
|
bool calibrating() const { return _calibrating; }
|
|
|
|
/// Perform cold-start initialisation for just the gyros.
|
|
///
|
|
/// @note This should not be called unless ::init has previously
|
|
/// been called, as ::init may perform other work
|
|
///
|
|
void init_gyro(void);
|
|
|
|
/// Fetch the current gyro values
|
|
///
|
|
/// @returns vector of rotational rates in radians/sec
|
|
///
|
|
const Vector3f &get_gyro(uint8_t i) const { return _gyro[i]; }
|
|
const Vector3f &get_gyro(void) const { return get_gyro(_primary_gyro); }
|
|
|
|
// set gyro offsets in radians/sec
|
|
const Vector3f &get_gyro_offsets(uint8_t i) const { return _gyro_offset[i]; }
|
|
const Vector3f &get_gyro_offsets(void) const { return get_gyro_offsets(_primary_gyro); }
|
|
|
|
//get delta angle if available
|
|
bool get_delta_angle(uint8_t i, Vector3f &delta_angle) const;
|
|
bool get_delta_angle(Vector3f &delta_angle) const { return get_delta_angle(_primary_gyro, delta_angle); }
|
|
|
|
//get delta velocity if available
|
|
bool get_delta_velocity(uint8_t i, Vector3f &delta_velocity) const;
|
|
bool get_delta_velocity(Vector3f &delta_velocity) const { return get_delta_velocity(_primary_accel, delta_velocity); }
|
|
|
|
float get_delta_velocity_dt(uint8_t i) const;
|
|
float get_delta_velocity_dt() const { return get_delta_velocity_dt(_primary_accel); }
|
|
|
|
/// Fetch the current accelerometer values
|
|
///
|
|
/// @returns vector of current accelerations in m/s/s
|
|
///
|
|
const Vector3f &get_accel(uint8_t i) const { return _accel[i]; }
|
|
const Vector3f &get_accel(void) const { return get_accel(_primary_accel); }
|
|
|
|
uint32_t get_gyro_error_count(uint8_t i) const { return _gyro_error_count[i]; }
|
|
uint32_t get_accel_error_count(uint8_t i) const { return _accel_error_count[i]; }
|
|
|
|
// multi-device interface
|
|
bool get_gyro_health(uint8_t instance) const { return (instance<_gyro_count) ? _gyro_healthy[instance] : false; }
|
|
bool get_gyro_health(void) const { return get_gyro_health(_primary_gyro); }
|
|
bool get_gyro_health_all(void) const;
|
|
uint8_t get_gyro_count(void) const { return _gyro_count; }
|
|
bool gyro_calibrated_ok(uint8_t instance) const { return _gyro_cal_ok[instance]; }
|
|
bool gyro_calibrated_ok_all() const;
|
|
|
|
bool get_accel_health(uint8_t instance) const { return (instance<_accel_count) ? _accel_healthy[instance] : false; }
|
|
bool get_accel_health(void) const { return get_accel_health(_primary_accel); }
|
|
bool get_accel_health_all(void) const;
|
|
uint8_t get_accel_count(void) const { return _accel_count; };
|
|
bool accel_calibrated_ok_all() const;
|
|
|
|
// get accel offsets in m/s/s
|
|
const Vector3f &get_accel_offsets(uint8_t i) const { return _accel_offset[i]; }
|
|
const Vector3f &get_accel_offsets(void) const { return get_accel_offsets(_primary_accel); }
|
|
|
|
// get accel scale
|
|
const Vector3f &get_accel_scale(uint8_t i) const { return _accel_scale[i]; }
|
|
const Vector3f &get_accel_scale(void) const { return get_accel_scale(_primary_accel); }
|
|
|
|
// return the temperature if supported. Zero is returned if no
|
|
// temperature is available
|
|
float get_temperature(uint8_t instance) const { return _temperature[instance]; }
|
|
|
|
/* get_delta_time returns the time period in seconds
|
|
* overwhich the sensor data was collected
|
|
*/
|
|
float get_delta_time() const { return _delta_time; }
|
|
|
|
// return the maximum gyro drift rate in radians/s/s. This
|
|
// depends on what gyro chips are being used
|
|
float get_gyro_drift_rate(void) const { return ToRad(0.5f/60); }
|
|
|
|
// update gyro and accel values from accumulated samples
|
|
void update(void);
|
|
|
|
// wait for a sample to be available
|
|
void wait_for_sample(void);
|
|
|
|
// class level parameters
|
|
static const struct AP_Param::GroupInfo var_info[];
|
|
|
|
// set overall board orientation
|
|
void set_board_orientation(enum Rotation orientation) {
|
|
_board_orientation = orientation;
|
|
}
|
|
|
|
// return the selected sample rate
|
|
Sample_rate get_sample_rate(void) const { return _sample_rate; }
|
|
|
|
uint16_t error_count(void) const { return 0; }
|
|
bool healthy(void) const { return get_gyro_health() && get_accel_health(); }
|
|
|
|
uint8_t get_primary_accel(void) const { return _primary_accel; }
|
|
uint8_t get_primary_gyro(void) const { return _primary_gyro; }
|
|
|
|
// enable HIL mode
|
|
void set_hil_mode(void) { _hil_mode = true; }
|
|
|
|
// get the gyro filter rate in Hz
|
|
uint8_t get_gyro_filter_hz(void) const { return _gyro_filter_cutoff; }
|
|
|
|
// get the accel filter rate in Hz
|
|
uint8_t get_accel_filter_hz(void) const { return _accel_filter_cutoff; }
|
|
|
|
// pass in a pointer to DataFlash for raw data logging
|
|
void set_dataflash(DataFlash_Class *dataflash) { _dataflash = dataflash; }
|
|
|
|
// enable/disable raw gyro/accel logging
|
|
void set_raw_logging(bool enable) { _log_raw_data = enable; }
|
|
|
|
#if INS_VIBRATION_CHECK
|
|
// calculate vibration levels and check for accelerometer clipping (called by a backends)
|
|
void calc_vibration_and_clipping(uint8_t instance, const Vector3f &accel, float dt);
|
|
|
|
// retrieve latest calculated vibration levels
|
|
Vector3f get_vibration_levels() const { return get_vibration_levels(_primary_accel); }
|
|
Vector3f get_vibration_levels(uint8_t instance) const;
|
|
|
|
// retrieve and clear accelerometer clipping count
|
|
uint32_t get_accel_clip_count(uint8_t instance) const;
|
|
#endif
|
|
|
|
/*
|
|
HIL set functions. The minimum for HIL is set_accel() and
|
|
set_gyro(). The others are option for higher fidelity log
|
|
playback
|
|
*/
|
|
void set_accel(uint8_t instance, const Vector3f &accel);
|
|
void set_gyro(uint8_t instance, const Vector3f &gyro);
|
|
void set_delta_time(float delta_time);
|
|
void set_delta_velocity(uint8_t instance, float deltavt, const Vector3f &deltav);
|
|
void set_delta_angle(uint8_t instance, const Vector3f &deltaa);
|
|
|
|
private:
|
|
|
|
// load backend drivers
|
|
void _add_backend(AP_InertialSensor_Backend *backend);
|
|
void _detect_backends(void);
|
|
|
|
// gyro initialisation
|
|
void _init_gyro();
|
|
|
|
// Calibration routines borrowed from Rolfe Schmidt
|
|
// blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
|
|
// original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
|
|
|
|
// _calibrate_accel - perform low level accel calibration
|
|
bool _calibrate_accel(const Vector3f accel_sample[6],
|
|
Vector3f& accel_offsets,
|
|
Vector3f& accel_scale,
|
|
float max_abs_offsets,
|
|
enum Rotation rotation);
|
|
bool _check_sample_range(const Vector3f accel_sample[6], enum Rotation rotation,
|
|
AP_InertialSensor_UserInteract* interact);
|
|
void _calibrate_update_matrices(float dS[6], float JS[6][6], float beta[6], float data[3]);
|
|
void _calibrate_reset_matrices(float dS[6], float JS[6][6]);
|
|
void _calibrate_find_delta(float dS[6], float JS[6][6], float delta[6]);
|
|
bool _calculate_trim(const Vector3f &accel_sample, float& trim_roll, float& trim_pitch);
|
|
|
|
// save parameters to eeprom
|
|
void _save_parameters();
|
|
|
|
// backend objects
|
|
AP_InertialSensor_Backend *_backends[INS_MAX_BACKENDS];
|
|
|
|
// number of gyros and accel drivers. Note that most backends
|
|
// provide both accel and gyro data, so will increment both
|
|
// counters on initialisation
|
|
uint8_t _gyro_count;
|
|
uint8_t _accel_count;
|
|
uint8_t _backend_count;
|
|
|
|
// the selected sample rate
|
|
Sample_rate _sample_rate;
|
|
|
|
// Most recent accelerometer reading
|
|
Vector3f _accel[INS_MAX_INSTANCES];
|
|
Vector3f _delta_velocity[INS_MAX_INSTANCES];
|
|
float _delta_velocity_dt[INS_MAX_INSTANCES];
|
|
bool _delta_velocity_valid[INS_MAX_INSTANCES];
|
|
|
|
// Most recent gyro reading
|
|
Vector3f _gyro[INS_MAX_INSTANCES];
|
|
Vector3f _delta_angle[INS_MAX_INSTANCES];
|
|
bool _delta_angle_valid[INS_MAX_INSTANCES];
|
|
|
|
// product id
|
|
AP_Int16 _product_id;
|
|
|
|
// accelerometer scaling and offsets
|
|
AP_Vector3f _accel_scale[INS_MAX_INSTANCES];
|
|
AP_Vector3f _accel_offset[INS_MAX_INSTANCES];
|
|
AP_Vector3f _gyro_offset[INS_MAX_INSTANCES];
|
|
|
|
// accelerometer max absolute offsets to be used for calibration
|
|
float _accel_max_abs_offsets[INS_MAX_INSTANCES];
|
|
|
|
// temperatures for an instance if available
|
|
float _temperature[INS_MAX_INSTANCES];
|
|
|
|
// filtering frequency (0 means default)
|
|
AP_Int8 _accel_filter_cutoff;
|
|
AP_Int8 _gyro_filter_cutoff;
|
|
|
|
// board orientation from AHRS
|
|
enum Rotation _board_orientation;
|
|
|
|
// calibrated_ok flags
|
|
bool _gyro_cal_ok[INS_MAX_INSTANCES];
|
|
|
|
// primary accel and gyro
|
|
uint8_t _primary_gyro;
|
|
uint8_t _primary_accel;
|
|
|
|
// has wait_for_sample() found a sample?
|
|
bool _have_sample:1;
|
|
|
|
// are we in HIL mode?
|
|
bool _hil_mode:1;
|
|
|
|
// are gyros or accels currently being calibrated
|
|
bool _calibrating:1;
|
|
|
|
// should we log raw accel/gyro data?
|
|
bool _log_raw_data:1;
|
|
|
|
// the delta time in seconds for the last sample
|
|
float _delta_time;
|
|
|
|
// last time a wait_for_sample() returned a sample
|
|
uint32_t _last_sample_usec;
|
|
|
|
// target time for next wait_for_sample() return
|
|
uint32_t _next_sample_usec;
|
|
|
|
// time between samples in microseconds
|
|
uint32_t _sample_period_usec;
|
|
|
|
// health of gyros and accels
|
|
bool _gyro_healthy[INS_MAX_INSTANCES];
|
|
bool _accel_healthy[INS_MAX_INSTANCES];
|
|
|
|
uint32_t _accel_error_count[INS_MAX_INSTANCES];
|
|
uint32_t _gyro_error_count[INS_MAX_INSTANCES];
|
|
|
|
#if INS_VIBRATION_CHECK
|
|
// vibration and clipping
|
|
uint32_t _accel_clip_count[INS_MAX_INSTANCES];
|
|
LowPassFilterVector3f _accel_vibe_floor_filter[INS_VIBRATION_CHECK_INSTANCES];
|
|
LowPassFilterVector3f _accel_vibe_filter[INS_VIBRATION_CHECK_INSTANCES];
|
|
#endif
|
|
|
|
/*
|
|
state for HIL support
|
|
*/
|
|
struct {
|
|
float delta_time;
|
|
} _hil {};
|
|
|
|
DataFlash_Class *_dataflash;
|
|
};
|
|
|
|
#include "AP_InertialSensor_Backend.h"
|
|
#include "AP_InertialSensor_MPU6000.h"
|
|
#include "AP_InertialSensor_PX4.h"
|
|
#include "AP_InertialSensor_Oilpan.h"
|
|
#include "AP_InertialSensor_MPU9250.h"
|
|
#include "AP_InertialSensor_L3G4200D.h"
|
|
#include "AP_InertialSensor_Flymaple.h"
|
|
#include "AP_InertialSensor_MPU9150.h"
|
|
#include "AP_InertialSensor_LSM9DS0.h"
|
|
#include "AP_InertialSensor_HIL.h"
|
|
#include "AP_InertialSensor_UserInteract_Stream.h"
|
|
#include "AP_InertialSensor_UserInteract_MAVLink.h"
|
|
|
|
#endif // __AP_INERTIAL_SENSOR_H__
|