Ardupilot2/libraries/AP_Proximity/AP_Proximity.cpp
Peter Barker 37f638c5f7 AP_Proximity: include AP_Proximity_Backend.h in AP_Proximity.cpp
fixes a compilation problem if all of the backends are compiled out!
2023-04-16 12:29:42 +10:00

520 lines
17 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Proximity.h"
#if HAL_PROXIMITY_ENABLED
#include "AP_Proximity_Backend.h"
#include "AP_Proximity_RPLidarA2.h"
#include "AP_Proximity_TeraRangerTower.h"
#include "AP_Proximity_TeraRangerTowerEvo.h"
#include "AP_Proximity_RangeFinder.h"
#include "AP_Proximity_MAV.h"
#include "AP_Proximity_LightWareSF40C.h"
#include "AP_Proximity_LightWareSF45B.h"
#include "AP_Proximity_SITL.h"
#include "AP_Proximity_AirSimSITL.h"
#include "AP_Proximity_Cygbot_D1.h"
#include "AP_Proximity_DroneCAN.h"
#include <AP_Logger/AP_Logger.h>
extern const AP_HAL::HAL &hal;
// table of user settable parameters
const AP_Param::GroupInfo AP_Proximity::var_info[] = {
// 0 is reserved for possible addition of an ENABLED parameter
// 1 was _TYPE
// 2 was _ORIENT
// 3 was _YAW_CORR
// 4 to 15 was _IGN_ANG1 to _IGN_WID6
// @Param{Copter}: _IGN_GND
// @DisplayName: Proximity sensor land detection
// @Description: Ignore proximity data that is within 1 meter of the ground below the vehicle. This requires a downward facing rangefinder
// @Values: 0:Disabled, 1:Enabled
// @User: Standard
AP_GROUPINFO_FRAME("_IGN_GND", 16, AP_Proximity, _ign_gnd_enable, 0, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER),
// @Param: _LOG_RAW
// @DisplayName: Proximity raw distances log
// @Description: Set this parameter to one if logging unfiltered(raw) distances from sensor should be enabled
// @Values: 0:Off, 1:On
// @User: Advanced
AP_GROUPINFO("_LOG_RAW", 17, AP_Proximity, _raw_log_enable, 0),
// @Param: _FILT
// @DisplayName: Proximity filter cutoff frequency
// @Description: Cutoff frequency for low pass filter applied to each face in the proximity boundary
// @Units: Hz
// @Range: 0 20
// @User: Advanced
AP_GROUPINFO("_FILT", 18, AP_Proximity, _filt_freq, 0.25f),
// 19 was _MIN
// 20 was _MAX
// @Param{Copter}: _ALT_MIN
// @DisplayName: Proximity lowest altitude.
// @Description: Minimum altitude below which proximity should not work.
// @Units: m
// @Range: 0 10
// @User: Advanced
AP_GROUPINFO_FRAME("_ALT_MIN", 25, AP_Proximity, _alt_min, 1.0f, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER),
// @Group: 1
// @Path: AP_Proximity_Params.cpp
AP_SUBGROUPINFO(params[0], "1", 21, AP_Proximity, AP_Proximity_Params),
#if PROXIMITY_MAX_INSTANCES > 1
// @Group: 2
// @Path: AP_Proximity_Params.cpp
AP_SUBGROUPINFO(params[1], "2", 22, AP_Proximity, AP_Proximity_Params),
#endif
#if PROXIMITY_MAX_INSTANCES > 2
// @Group: 3
// @Path: AP_Proximity_Params.cpp
AP_SUBGROUPINFO(params[2], "3", 23, AP_Proximity, AP_Proximity_Params),
#endif
#if PROXIMITY_MAX_INSTANCES > 3
// @Group: 4
// @Path: AP_Proximity_Params.cpp
AP_SUBGROUPINFO(params[3], "4", 24, AP_Proximity, AP_Proximity_Params),
#endif
AP_GROUPEND
};
AP_Proximity::AP_Proximity()
{
AP_Param::setup_object_defaults(this, var_info);
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (_singleton != nullptr) {
AP_HAL::panic("AP_Proximity must be singleton");
}
#endif // CONFIG_HAL_BOARD == HAL_BOARD_SITL
_singleton = this;
}
// initialise the Proximity class. We do detection of attached sensors here
// we don't allow for hot-plugging of sensors (i.e. reboot required)
void AP_Proximity::init()
{
if (num_instances != 0) {
// init called a 2nd time?
return;
}
// instantiate backends
uint8_t serial_instance = 0;
(void)serial_instance; // in case no serial backends are compiled in
for (uint8_t instance=0; instance<PROXIMITY_MAX_INSTANCES; instance++) {
switch (get_type(instance)) {
case Type::None:
break;
#if AP_PROXIMITY_RPLIDARA2_ENABLED
case Type::RPLidarA2:
if (AP_Proximity_RPLidarA2::detect(serial_instance)) {
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_RPLidarA2(*this, state[instance], params[instance], serial_instance);
serial_instance++;
}
break;
#endif
#if AP_PROXIMITY_MAV_ENABLED
case Type::MAV:
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_MAV(*this, state[instance], params[instance]);
break;
#endif
#if AP_PROXIMITY_TERARANGERTOWER_ENABLED
case Type::TRTOWER:
if (AP_Proximity_TeraRangerTower::detect(serial_instance)) {
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_TeraRangerTower(*this, state[instance], params[instance], serial_instance);
serial_instance++;
}
break;
#endif
#if AP_PROXIMITY_TERARANGERTOWEREVO_ENABLED
case Type::TRTOWEREVO:
if (AP_Proximity_TeraRangerTowerEvo::detect(serial_instance)) {
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_TeraRangerTowerEvo(*this, state[instance], params[instance], serial_instance);
serial_instance++;
}
break;
#endif
#if AP_PROXIMITY_RANGEFINDER_ENABLED
case Type::RangeFinder:
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_RangeFinder(*this, state[instance], params[instance]);
break;
#endif
#if AP_PROXIMITY_LIGHTWARE_SF40C_ENABLED
case Type::SF40C:
if (AP_Proximity_LightWareSF40C::detect(serial_instance)) {
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_LightWareSF40C(*this, state[instance], params[instance], serial_instance);
serial_instance++;
}
break;
#endif
#if AP_PROXIMITY_LIGHTWARE_SF45B_ENABLED
case Type::SF45B:
if (AP_Proximity_LightWareSF45B::detect(serial_instance)) {
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_LightWareSF45B(*this, state[instance], params[instance], serial_instance);
serial_instance++;
}
break;
#endif
#if AP_PROXIMITY_CYGBOT_ENABLED
case Type::CYGBOT_D1:
if (AP_Proximity_Cygbot_D1::detect(serial_instance)) {
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_Cygbot_D1(*this, state[instance], params[instance], serial_instance);
serial_instance++;
}
break;
# endif
#if AP_PROXIMITY_DRONECAN_ENABLED
case Type::DroneCAN:
num_instances = instance+1;
break;
#endif
#if AP_PROXIMITY_SITL_ENABLED
case Type::SITL:
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_SITL(*this, state[instance], params[instance]);
break;
#endif
#if AP_PROXIMITY_AIRSIMSITL_ENABLED
case Type::AirSimSITL:
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_AirSimSITL(*this, state[instance], params[instance]);
break;
#endif
}
if (drivers[instance] != nullptr) {
// we loaded a driver for this instance, so it must be
// present (although it may not be healthy)
num_instances = instance+1;
}
// initialise status
state[instance].status = Status::NotConnected;
}
}
// update Proximity state for all instances. This should be called at a high rate by the main loop
void AP_Proximity::update()
{
for (uint8_t i=0; i<num_instances; i++) {
if (!valid_instance(i)) {
continue;
}
drivers[i]->update();
}
// set boundary cutoff freq for low pass filter
boundary.set_filter_freq(get_filter_freq());
// check if any face has valid distance when it should not
boundary.check_face_timeout();
}
AP_Proximity::Type AP_Proximity::get_type(uint8_t instance) const
{
if (instance < PROXIMITY_MAX_INSTANCES) {
return (Type)((uint8_t)params[instance].type);
}
return Type::None;
}
// return sensor health
AP_Proximity::Status AP_Proximity::get_instance_status(uint8_t instance) const
{
// sanity check instance number
if (!valid_instance(instance)) {
return Status::NotConnected;
}
return state[instance].status;
}
AP_Proximity::Status AP_Proximity::get_status() const
{
for (uint8_t i=0; i<num_instances; i++) {
const Status sensors_status = get_instance_status(i);
if (sensors_status != Status::Good) {
// return first bad status
return sensors_status;
}
}
// All valid sensors seem to be working
return Status::Good;
}
// prearm checks
bool AP_Proximity::prearm_healthy(char *failure_msg, const uint8_t failure_msg_len) const
{
for (uint8_t i=0; i<num_instances; i++) {
switch (get_instance_status(i)) {
case Status::NoData:
hal.util->snprintf(failure_msg, failure_msg_len, "PRX%d: No Data", i + 1);
return false;
case Status::NotConnected:
hal.util->snprintf(failure_msg, failure_msg_len, "PRX%d: Not Connected", i + 1);
return false;
case Status::Good:
break;
}
}
return true;
}
// get maximum and minimum distances (in meters)
float AP_Proximity::distance_max() const
{
float dist_max = 0;
// return longest distance from all backends
for (uint8_t i=0; i<num_instances; i++) {
if (valid_instance(i)) {
dist_max = MAX(dist_max, drivers[i]->distance_max());
}
}
return dist_max;
}
float AP_Proximity::distance_min() const
{
float dist_min = 0;
bool found_dist_min = false;
// calculate shortest distance from all backends
for (uint8_t i=0; i<num_instances; i++) {
if (valid_instance(i)) {
const float disti_min = drivers[i]->distance_min();
if (!found_dist_min || (disti_min <= dist_min)) {
dist_min = disti_min;
found_dist_min = true;
}
}
}
if (found_dist_min) {
return dist_min;
}
return 0;
}
// get distances in 8 directions. used for sending distances to ground station
bool AP_Proximity::get_horizontal_distances(Proximity_Distance_Array &prx_dist_array) const
{
Proximity_Distance_Array prx_filt_dist_array; // unused
return boundary.get_layer_distances(PROXIMITY_MIDDLE_LAYER, distance_max(), prx_dist_array, prx_filt_dist_array);
}
// get total number of obstacles, used in GPS based Simple Avoidance
uint8_t AP_Proximity::get_obstacle_count() const
{
return boundary.get_obstacle_count();
}
// get vector to obstacle based on obstacle_num passed, used in GPS based Simple Avoidance
bool AP_Proximity::get_obstacle(uint8_t obstacle_num, Vector3f& vec_to_obstacle) const
{
return boundary.get_obstacle(obstacle_num, vec_to_obstacle);
}
// returns shortest distance to "obstacle_num" obstacle, from a line segment formed between "seg_start" and "seg_end"
// returns FLT_MAX if it's an invalid instance.
bool AP_Proximity::closest_point_from_segment_to_obstacle(uint8_t obstacle_num, const Vector3f& seg_start, const Vector3f& seg_end, Vector3f& closest_point) const
{
return boundary.closest_point_from_segment_to_obstacle(obstacle_num , seg_start, seg_end, closest_point);
}
// get distance and angle to closest object (used for pre-arm check)
// returns true on success, false if no valid readings
bool AP_Proximity::get_closest_object(float& angle_deg, float &distance) const
{
return boundary.get_closest_object(angle_deg, distance);
}
// get number of objects, angle and distance - used for non-GPS avoidance
uint8_t AP_Proximity::get_object_count() const
{
return boundary.get_horizontal_object_count();
}
// get number of objects, angle and distance - used for non-GPS avoidance
bool AP_Proximity::get_object_angle_and_distance(uint8_t object_number, float& angle_deg, float &distance) const
{
return boundary.get_horizontal_object_angle_and_distance(object_number, angle_deg, distance);
}
// get obstacle pitch and angle for a particular obstacle num
bool AP_Proximity::get_obstacle_info(uint8_t obstacle_num, float &angle_deg, float &pitch, float &distance) const
{
return boundary.get_obstacle_info(obstacle_num, angle_deg, pitch, distance);
}
// handle mavlink messages
void AP_Proximity::handle_msg(const mavlink_message_t &msg)
{
for (uint8_t i=0; i<num_instances; i++) {
if (valid_instance(i)) {
drivers[i]->handle_msg(msg);
}
}
}
// methods for mavlink SYS_STATUS message (send_sys_status)
bool AP_Proximity::sensor_present() const
{
return get_status() != Status::NotConnected;
}
bool AP_Proximity::sensor_enabled() const
{
// check atleast one sensor is enabled
return (num_instances > 0);
}
bool AP_Proximity::sensor_failed() const
{
return get_status() != Status::Good;
}
// get distance in meters upwards, returns true on success
bool AP_Proximity::get_upward_distance(uint8_t instance, float &distance) const
{
if (!valid_instance(instance)) {
return false;
}
// get upward distance from backend
return drivers[instance]->get_upward_distance(distance);
}
bool AP_Proximity::get_upward_distance(float &distance) const
{
// get upward distance from backend
for (uint8_t i=0; i<num_instances; i++) {
// return first good upward distance
if (get_upward_distance(i, distance)) {
return true;
}
}
return false;
}
#if HAL_LOGGING_ENABLED
// Write proximity sensor distances
void AP_Proximity::log()
{
// exit immediately if no sensors
if (num_sensors() == 0) {
return;
}
Proximity_Distance_Array dist_array{}; // raw distances stored here
Proximity_Distance_Array filt_dist_array{}; //filtered distances stored here
auto &logger { AP::logger() };
for (uint8_t i = 0; i < boundary.get_num_layers(); i++) {
const bool active = boundary.get_layer_distances(i, distance_max(), dist_array, filt_dist_array);
if (!active) {
// nothing on this layer
continue;
}
float dist_up;
if (!get_upward_distance(dist_up)) {
dist_up = 0.0f;
}
float closest_ang = 0.0f;
float closest_dist = 0.0f;
get_closest_object(closest_ang, closest_dist);
const struct log_Proximity pkt_proximity{
LOG_PACKET_HEADER_INIT(LOG_PROXIMITY_MSG),
time_us : AP_HAL::micros64(),
instance : i,
health : (uint8_t)get_status(),
dist0 : filt_dist_array.distance[0],
dist45 : filt_dist_array.distance[1],
dist90 : filt_dist_array.distance[2],
dist135 : filt_dist_array.distance[3],
dist180 : filt_dist_array.distance[4],
dist225 : filt_dist_array.distance[5],
dist270 : filt_dist_array.distance[6],
dist315 : filt_dist_array.distance[7],
distup : dist_up,
closest_angle : closest_ang,
closest_dist : closest_dist
};
logger.WriteBlock(&pkt_proximity, sizeof(pkt_proximity));
if (_raw_log_enable) {
const struct log_Proximity_raw pkt_proximity_raw{
LOG_PACKET_HEADER_INIT(LOG_RAW_PROXIMITY_MSG),
time_us : AP_HAL::micros64(),
instance : i,
raw_dist0 : dist_array.distance[0],
raw_dist45 : dist_array.distance[1],
raw_dist90 : dist_array.distance[2],
raw_dist135 : dist_array.distance[3],
raw_dist180 : dist_array.distance[4],
raw_dist225 : dist_array.distance[5],
raw_dist270 : dist_array.distance[6],
raw_dist315 : dist_array.distance[7],
};
logger.WriteBlock(&pkt_proximity_raw, sizeof(pkt_proximity_raw));
}
}
}
#endif
// return true if the given instance exists
bool AP_Proximity::valid_instance(uint8_t i) const
{
if (i >= PROXIMITY_MAX_INSTANCES) {
return false;
}
if (drivers[i] == nullptr) {
return false;
}
return (Type)params[i].type.get() != Type::None;
}
AP_Proximity *AP_Proximity::_singleton;
namespace AP {
AP_Proximity *proximity()
{
return AP_Proximity::get_singleton();
}
}
#endif // HAL_PROXIMITY_ENABLED