Ardupilot2/ArduSub/control_althold.cpp
2019-04-08 09:42:21 +09:00

136 lines
5.6 KiB
C++

#include "Sub.h"
/*
* control_althold.pde - init and run calls for althold, flight mode
*/
// althold_init - initialise althold controller
bool Sub::althold_init()
{
if(!control_check_barometer()) {
return false;
}
// initialize vertical speeds and leash lengths
// sets the maximum speed up and down returned by position controller
pos_control.set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
pos_control.set_max_accel_z(g.pilot_accel_z);
// initialise position and desired velocity
pos_control.set_alt_target(inertial_nav.get_altitude());
pos_control.set_desired_velocity_z(inertial_nav.get_velocity_z());
last_pilot_heading = ahrs.yaw_sensor;
return true;
}
// althold_run - runs the althold controller
// should be called at 100hz or more
void Sub::althold_run()
{
uint32_t tnow = AP_HAL::millis();
// initialize vertical speeds and acceleration
pos_control.set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
pos_control.set_max_accel_z(g.pilot_accel_z);
if (!motors.armed()) {
motors.set_desired_spool_state(AP_Motors::DESIRED_GROUND_IDLE);
// Sub vehicles do not stabilize roll/pitch/yaw when not auto-armed (i.e. on the ground, pilot has never raised throttle)
attitude_control.set_throttle_out(0,true,g.throttle_filt);
attitude_control.relax_attitude_controllers();
pos_control.relax_alt_hold_controllers(motors.get_throttle_hover());
last_pilot_heading = ahrs.yaw_sensor;
return;
}
motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// get pilot desired lean angles
float target_roll, target_pitch;
// Check if set_attitude_target_no_gps is valid
if (tnow - sub.set_attitude_target_no_gps.last_message_ms < 5000) {
float target_yaw;
Quaternion(
set_attitude_target_no_gps.packet.q
).to_euler(
target_roll,
target_pitch,
target_yaw
);
target_roll = degrees(target_roll);
target_pitch = degrees(target_pitch);
target_yaw = degrees(target_yaw);
attitude_control.input_euler_angle_roll_pitch_yaw(target_roll * 1e2f, target_pitch * 1e2f, target_yaw * 1e2f, true);
return;
}
get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, attitude_control.get_althold_lean_angle_max());
// get pilot's desired yaw rate
float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
// call attitude controller
if (!is_zero(target_yaw_rate)) { // call attitude controller with rate yaw determined by pilot input
attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);
last_pilot_heading = ahrs.yaw_sensor;
last_pilot_yaw_input_ms = tnow; // time when pilot last changed heading
} else { // hold current heading
// this check is required to prevent bounce back after very fast yaw maneuvers
// the inertia of the vehicle causes the heading to move slightly past the point when pilot input actually stopped
if (tnow < last_pilot_yaw_input_ms + 250) { // give 250ms to slow down, then set target heading
target_yaw_rate = 0; // Stop rotation on yaw axis
// call attitude controller with target yaw rate = 0 to decelerate on yaw axis
attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);
last_pilot_heading = ahrs.yaw_sensor; // update heading to hold
} else { // call attitude controller holding absolute absolute bearing
attitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, last_pilot_heading, true);
}
}
// Hold actual position until zero derivative is detected
static bool engageStopZ = true;
// Get last user velocity direction to check for zero derivative points
static bool lastVelocityZWasNegative = false;
if (fabsf(channel_throttle->norm_input()-0.5f) > 0.05f) { // Throttle input above 5%
// output pilot's throttle
attitude_control.set_throttle_out(channel_throttle->norm_input(), false, g.throttle_filt);
// reset z targets to current values
pos_control.relax_alt_hold_controllers();
engageStopZ = true;
lastVelocityZWasNegative = is_negative(inertial_nav.get_velocity_z());
} else { // hold z
if (ap.at_bottom) {
pos_control.relax_alt_hold_controllers(); // clear velocity and position targets
pos_control.set_alt_target(inertial_nav.get_altitude() + 10.0f); // set target to 10 cm above bottom
} else if (rangefinder_alt_ok()) {
// if rangefinder is ok, use surface tracking
float target_climb_rate = get_surface_tracking_climb_rate(0, pos_control.get_alt_target(), G_Dt);
pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
}
// Detects a zero derivative
// When detected, move the altitude set point to the actual position
// This will avoid any problem related to joystick delays
// or smaller input signals
if(engageStopZ && (lastVelocityZWasNegative ^ is_negative(inertial_nav.get_velocity_z()))) {
engageStopZ = false;
pos_control.relax_alt_hold_controllers();
}
pos_control.update_z_controller();
}
motors.set_forward(channel_forward->norm_input());
motors.set_lateral(channel_lateral->norm_input());
}