Ardupilot2/Tools/autotest/pysim/util.py
2011-12-13 15:28:03 +11:00

406 lines
11 KiB
Python

import euclid, math
import os, pexpect, sys, time, random
from subprocess import call, check_call,Popen, PIPE
def RPY_to_XYZ(roll, pitch, yaw, length):
'''convert roll, pitch and yaw in degrees to
Vector3 in X, Y and Z
inputs:
roll, pitch and yaw are in degrees
yaw == 0 when pointing North
roll == zero when horizontal. +ve roll means tilting to the right
pitch == zero when horizontal, +ve pitch means nose is pointing upwards
length is in an arbitrary linear unit.
When RPY is (0, 0, 0) then length represents distance upwards
outputs:
Vector3:
X is in units along latitude. +ve X means going North
Y is in units along longitude +ve Y means going East
Z is altitude in units (+ve is up)
test suite:
>>> RPY_to_XYZ(0, 0, 0, 1)
Vector3(0.00, 0.00, 1.00)
>>> RPY_to_XYZ(0, 0, 0, 2)
Vector3(0.00, 0.00, 2.00)
>>> RPY_to_XYZ(90, 0, 0, 1)
Vector3(0.00, 1.00, 0.00)
>>> RPY_to_XYZ(-90, 0, 0, 1)
Vector3(0.00, -1.00, 0.00)
>>> RPY_to_XYZ(0, 90, 0, 1)
Vector3(-1.00, 0.00, 0.00)
>>> RPY_to_XYZ(0, -90, 0, 1)
Vector3(1.00, 0.00, 0.00)
>>> RPY_to_XYZ(90, 0, 180, 1)
Vector3(-0.00, -1.00, 0.00)
>>> RPY_to_XYZ(-90, 0, 180, 1)
Vector3(0.00, 1.00, 0.00)
>>> RPY_to_XYZ(0, 90, 180, 1)
Vector3(1.00, -0.00, 0.00)
>>> RPY_to_XYZ(0, -90, 180, 1)
Vector3(-1.00, 0.00, 0.00)
>>> RPY_to_XYZ(90, 0, 90, 1)
Vector3(-1.00, 0.00, 0.00)
>>> RPY_to_XYZ(-90, 0, 90, 1)
Vector3(1.00, -0.00, 0.00)
>>> RPY_to_XYZ(90, 0, 270, 1)
Vector3(1.00, -0.00, 0.00)
>>> RPY_to_XYZ(-90, 0, 270, 1)
Vector3(-1.00, 0.00, 0.00)
>>> RPY_to_XYZ(0, 90, 90, 1)
Vector3(-0.00, -1.00, 0.00)
>>> RPY_to_XYZ(0, -90, 90, 1)
Vector3(0.00, 1.00, 0.00)
>>> RPY_to_XYZ(0, 90, 270, 1)
Vector3(0.00, 1.00, 0.00)
>>> RPY_to_XYZ(0, -90, 270, 1)
Vector3(-0.00, -1.00, 0.00)
'''
v = euclid.Vector3(0, 0, length)
v = euclid.Quaternion.new_rotate_euler(-math.radians(pitch), 0, -math.radians(roll)) * v
v = euclid.Quaternion.new_rotate_euler(0, math.radians(yaw), 0) * v
return v
def m2ft(x):
'''meters to feet'''
return float(x) / 0.3048
def ft2m(x):
'''feet to meters'''
return float(x) * 0.3048
def kt2mps(x):
return x * 0.514444444
def mps2kt(x):
return x / 0.514444444
def topdir():
'''return top of git tree where autotest is running from'''
d = os.path.dirname(os.path.realpath(__file__))
assert(os.path.basename(d)=='pysim')
d = os.path.dirname(d)
assert(os.path.basename(d)=='autotest')
d = os.path.dirname(d)
assert(os.path.basename(d)=='Tools')
d = os.path.dirname(d)
return d
def reltopdir(path):
'''return a path relative to topdir()'''
return os.path.normpath(os.path.join(topdir(), path))
def run_cmd(cmd, dir=".", show=False, output=False, checkfail=True):
'''run a shell command'''
if show:
print("Running: '%s' in '%s'" % (cmd, dir))
if output:
return Popen([cmd], shell=True, stdout=PIPE, cwd=dir).communicate()[0]
elif checkfail:
return check_call(cmd, shell=True, cwd=dir)
else:
return call(cmd, shell=True, cwd=dir)
def rmfile(path):
'''remove a file if it exists'''
try:
os.unlink(path)
except Exception:
pass
def deltree(path):
'''delete a tree of files'''
run_cmd('rm -rf %s' % path)
def build_SIL(atype):
'''build desktop SIL'''
run_cmd("make clean sitl",
dir=reltopdir(atype),
checkfail=True)
return True
def build_AVR(atype, board='mega2560'):
'''build AVR binaries'''
config = open(reltopdir('config.mk'), mode='w')
config.write('''
BOARD=%s
PORT=/dev/null
''' % board)
config.close()
run_cmd("make clean", dir=reltopdir(atype), checkfail=True)
run_cmd("make", dir=reltopdir(atype), checkfail=True)
return True
# list of pexpect children to close on exit
close_list = []
def pexpect_autoclose(p):
'''mark for autoclosing'''
global close_list
close_list.append(p)
def pexpect_close(p):
'''close a pexpect child'''
global close_list
try:
p.close()
except Exception:
pass
try:
p.close(force=True)
except Exception:
pass
if p in close_list:
close_list.remove(p)
def pexpect_close_all():
'''close all pexpect children'''
global close_list
for p in close_list[:]:
pexpect_close(p)
def pexpect_drain(p):
'''drain any pending input'''
try:
p.read_nonblocking(1000, timeout=0)
except pexpect.TIMEOUT:
pass
def start_SIL(atype, valgrind=False, wipe=False, CLI=False, height=None):
'''launch a SIL instance'''
cmd=""
if valgrind and os.path.exists('/usr/bin/valgrind'):
cmd += 'valgrind -q --log-file=%s-valgrind.log ' % atype
cmd += reltopdir('tmp/%s.build/%s.elf' % (atype, atype))
if wipe:
cmd += ' -w'
if CLI:
cmd += ' -s'
if height is not None:
cmd += ' -H %u' % height
ret = pexpect.spawn(cmd, logfile=sys.stdout, timeout=5)
ret.delaybeforesend = 0
pexpect_autoclose(ret)
ret.expect('Waiting for connection')
return ret
def start_MAVProxy_SIL(atype, aircraft=None, setup=False, master='tcp:127.0.0.1:5760',
fgrate=200,
options=None, logfile=sys.stdout):
'''launch mavproxy connected to a SIL instance'''
global close_list
MAVPROXY = reltopdir('../MAVProxy/mavproxy.py')
cmd = MAVPROXY + ' --master=%s --fgrate=%u --out=127.0.0.1:14550' % (master, fgrate)
if setup:
cmd += ' --setup'
if aircraft is None:
aircraft = 'test.%s' % atype
cmd += ' --aircraft=%s' % aircraft
if options is not None:
cmd += ' ' + options
ret = pexpect.spawn(cmd, logfile=logfile, timeout=60)
ret.delaybeforesend = 0
pexpect_autoclose(ret)
return ret
def expect_setup_callback(e, callback):
'''setup a callback that is called once a second while waiting for
patterns'''
def _expect_callback(pattern, timeout=e.timeout):
tstart = time.time()
while time.time() < tstart + timeout:
try:
ret = e.expect_saved(pattern, timeout=1)
return ret
except pexpect.TIMEOUT:
e.expect_user_callback(e)
pass
print("Timed out looking for %s" % pattern)
raise pexpect.TIMEOUT(timeout)
e.expect_user_callback = callback
e.expect_saved = e.expect
e.expect = _expect_callback
def mkdir_p(dir):
'''like mkdir -p'''
if not dir:
return
if dir.endswith("/"):
mkdir_p(dir[:-1])
return
if os.path.isdir(dir):
return
mkdir_p(os.path.dirname(dir))
os.mkdir(dir)
def loadfile(fname):
'''load a file as a string'''
f = open(fname, mode='r')
r = f.read()
f.close()
return r
def lock_file(fname):
'''lock a file'''
import fcntl
f = open(fname, mode='w')
try:
fcntl.lockf(f, fcntl.LOCK_EX | fcntl.LOCK_NB)
except Exception:
return None
return f
def check_parent(parent_pid=os.getppid()):
'''check our parent process is still alive'''
try:
os.kill(parent_pid, 0)
except Exception:
print("Parent had finished - exiting")
sys.exit(1)
def EarthRatesToBodyRates(roll, pitch, yaw,
rollRate, pitchRate, yawRate):
'''convert the angular velocities from earth frame to
body frame. Thanks to James Goppert for the formula
all inputs and outputs are in degrees
returns a tuple, (p,q,r)
'''
from math import radians, degrees, sin, cos, tan
phi = radians(roll)
theta = radians(pitch)
phiDot = radians(rollRate)
thetaDot = radians(pitchRate)
psiDot = radians(yawRate)
p = phiDot - psiDot*sin(theta)
q = cos(phi)*thetaDot + sin(phi)*psiDot*cos(theta)
r = cos(phi)*psiDot*cos(theta) - sin(phi)*thetaDot
return (degrees(p), degrees(q), degrees(r))
def BodyRatesToEarthRates(roll, pitch, yaw, pDeg, qDeg, rDeg):
'''convert the angular velocities from body frame to
earth frame.
all inputs and outputs are in degrees
returns a tuple, (rollRate,pitchRate,yawRate)
'''
from math import radians, degrees, sin, cos, tan, fabs
p = radians(pDeg)
q = radians(qDeg)
r = radians(rDeg)
phi = radians(roll)
theta = radians(pitch)
phiDot = p + tan(theta)*(q*sin(phi) + r*cos(phi))
thetaDot = q*cos(phi) - r*sin(phi)
if fabs(cos(theta)) < 1.0e-20:
theta += 1.0e-10
psiDot = (q*sin(phi) + r*cos(phi))/cos(theta)
return (degrees(phiDot), degrees(thetaDot), degrees(psiDot))
class Wind(object):
'''a wind generation object'''
def __init__(self, windstring, cross_section=0.1):
a = windstring.split(',')
if len(a) != 3:
raise RuntimeError("Expected wind in speed,direction,turbulance form, not %s" % windstring)
self.speed = float(a[0]) # m/s
self.direction = float(a[1]) # direction the wind is going in
self.turbulance= float(a[2]) # turbulance factor (standard deviation)
# the cross-section of the aircraft to wind. This is multiplied by the
# difference in the wind and the velocity of the aircraft to give the acceleration
self.cross_section = cross_section
# the time constant for the turbulance - the average period of the
# changes over time
self.turbulance_time_constant = 5.0
# wind time record
self.tlast = time.time()
# initial turbulance multiplier
self.turbulance_mul = 1.0
def current(self, deltat=None):
'''return current wind speed and direction as a tuple
speed is in m/s, direction in degrees
'''
if deltat is None:
tnow = time.time()
deltat = tnow - self.tlast
self.tlast = tnow
# update turbulance random walk
w_delta = math.sqrt(deltat)*(1.0-random.gauss(1.0, self.turbulance))
w_delta -= (self.turbulance_mul-1.0)*(deltat/self.turbulance_time_constant)
self.turbulance_mul += w_delta
speed = self.speed * self.turbulance_mul
return (speed, self.direction)
def accel(self, velocity, deltat=None):
'''return current wind acceleration in ground frame. The
velocity is a Vector3 of the current velocity of the aircraft
in earth frame, m/s'''
(speed, direction) = self.current(deltat=deltat)
# wind vector
v = euclid.Vector3(speed, 0, 0)
wind = euclid.Quaternion.new_rotate_euler(0, math.radians(direction), 0) * v
# relative wind vector
relwind = wind - velocity
# add in cross-section effect
a = relwind * self.cross_section
return a
if __name__ == "__main__":
import doctest
doctest.testmod()