Ardupilot2/ArduCopter/mode_throw.cpp
Peter Barker 676d75c391 Copter: correct namespacing of Copter modes
This makes us look like Rover and Plane in terms of namespacing for the
Mode classes, and removes a wart where we #include mode.h in the middle
of the Mode class.

This was done mechanically for the most part.

I've had to remove the convenience reference for ap as part of this.
2019-06-11 09:18:22 +09:00

283 lines
10 KiB
C++

#include "Copter.h"
#if MODE_THROW_ENABLED == ENABLED
// throw_init - initialise throw controller
bool ModeThrow::init(bool ignore_checks)
{
#if FRAME_CONFIG == HELI_FRAME
// do not allow helis to use throw to start
return false;
#endif
// do not enter the mode when already armed or when flying
if (motors->armed()) {
return false;
}
// init state
stage = Throw_Disarmed;
nextmode_attempted = false;
return true;
}
// runs the throw to start controller
// should be called at 100hz or more
void ModeThrow::run()
{
/* Throw State Machine
Throw_Disarmed - motors are off
Throw_Detecting - motors are on and we are waiting for the throw
Throw_Uprighting - the throw has been detected and the copter is being uprighted
Throw_HgtStabilise - the copter is kept level and height is stabilised about the target height
Throw_PosHold - the copter is kept at a constant position and height
*/
if (!motors->armed()) {
// state machine entry is always from a disarmed state
stage = Throw_Disarmed;
} else if (stage == Throw_Disarmed && motors->armed()) {
gcs().send_text(MAV_SEVERITY_INFO,"waiting for throw");
stage = Throw_Detecting;
} else if (stage == Throw_Detecting && throw_detected()){
gcs().send_text(MAV_SEVERITY_INFO,"throw detected - uprighting");
stage = Throw_Uprighting;
// Cancel the waiting for throw tone sequence
AP_Notify::flags.waiting_for_throw = false;
} else if (stage == Throw_Uprighting && throw_attitude_good()) {
gcs().send_text(MAV_SEVERITY_INFO,"uprighted - controlling height");
stage = Throw_HgtStabilise;
// initialize vertical speed and acceleration limits
// use brake mode values for rapid response
pos_control->set_max_speed_z(BRAKE_MODE_SPEED_Z, BRAKE_MODE_SPEED_Z);
pos_control->set_max_accel_z(BRAKE_MODE_DECEL_RATE);
// initialise the demanded height to 3m above the throw height
// we want to rapidly clear surrounding obstacles
if (g2.throw_type == ThrowType_Drop) {
pos_control->set_alt_target(inertial_nav.get_altitude() - 100);
} else {
pos_control->set_alt_target(inertial_nav.get_altitude() + 300);
}
// set the initial velocity of the height controller demand to the measured velocity if it is going up
// if it is going down, set it to zero to enforce a very hard stop
pos_control->set_desired_velocity_z(fmaxf(inertial_nav.get_velocity_z(),0.0f));
// Set the auto_arm status to true to avoid a possible automatic disarm caused by selection of an auto mode with throttle at minimum
copter.set_auto_armed(true);
} else if (stage == Throw_HgtStabilise && throw_height_good()) {
gcs().send_text(MAV_SEVERITY_INFO,"height achieved - controlling position");
stage = Throw_PosHold;
// initialise the loiter target to the current position and velocity
loiter_nav->clear_pilot_desired_acceleration();
loiter_nav->init_target();
// Set the auto_arm status to true to avoid a possible automatic disarm caused by selection of an auto mode with throttle at minimum
copter.set_auto_armed(true);
} else if (stage == Throw_PosHold && throw_position_good()) {
if (!nextmode_attempted) {
switch (g2.throw_nextmode) {
case AUTO:
case GUIDED:
case RTL:
case LAND:
case BRAKE:
case LOITER:
set_mode((control_mode_t)g2.throw_nextmode.get(), MODE_REASON_THROW_COMPLETE);
break;
default:
// do nothing
break;
}
nextmode_attempted = true;
}
}
// Throw State Processing
switch (stage) {
case Throw_Disarmed:
// prevent motors from rotating before the throw is detected unless enabled by the user
if (g.throw_motor_start == 1) {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
} else {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
}
// demand zero throttle (motors will be stopped anyway) and continually reset the attitude controller
attitude_control->set_yaw_target_to_current_heading();
attitude_control->reset_rate_controller_I_terms();
attitude_control->set_throttle_out(0,true,g.throttle_filt);
break;
case Throw_Detecting:
// prevent motors from rotating before the throw is detected unless enabled by the user
if (g.throw_motor_start == 1) {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
} else {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
}
// Hold throttle at zero during the throw and continually reset the attitude controller
attitude_control->set_yaw_target_to_current_heading();
attitude_control->reset_rate_controller_I_terms();
attitude_control->set_throttle_out(0,true,g.throttle_filt);
// Play the waiting for throw tone sequence to alert the user
AP_Notify::flags.waiting_for_throw = true;
break;
case Throw_Uprighting:
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// demand a level roll/pitch attitude with zero yaw rate
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0.0f, 0.0f, 0.0f);
// output 50% throttle and turn off angle boost to maximise righting moment
attitude_control->set_throttle_out(0.5f, false, g.throttle_filt);
break;
case Throw_HgtStabilise:
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0.0f, 0.0f, 0.0f);
// call height controller
pos_control->set_alt_target_from_climb_rate_ff(0.0f, G_Dt, false);
pos_control->update_z_controller();
break;
case Throw_PosHold:
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// run loiter controller
loiter_nav->update();
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), 0.0f);
// call height controller
pos_control->set_alt_target_from_climb_rate_ff(0.0f, G_Dt, false);
pos_control->update_z_controller();
break;
}
// log at 10hz or if stage changes
uint32_t now = AP_HAL::millis();
if ((stage != prev_stage) || (now - last_log_ms) > 100) {
prev_stage = stage;
last_log_ms = now;
const float velocity = inertial_nav.get_velocity().length();
const float velocity_z = inertial_nav.get_velocity().z;
const float accel = copter.ins.get_accel().length();
const float ef_accel_z = ahrs.get_accel_ef().z;
const bool throw_detect = (stage > Throw_Detecting) || throw_detected();
const bool attitude_ok = (stage > Throw_Uprighting) || throw_attitude_good();
const bool height_ok = (stage > Throw_HgtStabilise) || throw_height_good();
const bool pos_ok = (stage > Throw_PosHold) || throw_position_good();
AP::logger().Write(
"THRO",
"TimeUS,Stage,Vel,VelZ,Acc,AccEfZ,Throw,AttOk,HgtOk,PosOk",
"s-nnoo----",
"F-0000----",
"QBffffbbbb",
AP_HAL::micros64(),
(uint8_t)stage,
(double)velocity,
(double)velocity_z,
(double)accel,
(double)ef_accel_z,
throw_detect,
attitude_ok,
height_ok,
pos_ok);
}
}
bool ModeThrow::throw_detected()
{
// Check that we have a valid navigation solution
nav_filter_status filt_status = inertial_nav.get_filter_status();
if (!filt_status.flags.attitude || !filt_status.flags.horiz_pos_abs || !filt_status.flags.vert_pos) {
return false;
}
// Check for high speed (>500 cm/s)
bool high_speed = inertial_nav.get_velocity().length() > THROW_HIGH_SPEED;
// check for upwards or downwards trajectory (airdrop) of 50cm/s
bool changing_height;
if (g2.throw_type == ThrowType_Drop) {
changing_height = inertial_nav.get_velocity().z < -THROW_VERTICAL_SPEED;
} else {
changing_height = inertial_nav.get_velocity().z > THROW_VERTICAL_SPEED;
}
// Check the vertical acceleraton is greater than 0.25g
bool free_falling = ahrs.get_accel_ef().z > -0.25 * GRAVITY_MSS;
// Check if the accel length is < 1.0g indicating that any throw action is complete and the copter has been released
bool no_throw_action = copter.ins.get_accel().length() < 1.0f * GRAVITY_MSS;
// High velocity or free-fall combined with increasing height indicate a possible air-drop or throw release
bool possible_throw_detected = (free_falling || high_speed) && changing_height && no_throw_action;
// Record time and vertical velocity when we detect the possible throw
if (possible_throw_detected && ((AP_HAL::millis() - free_fall_start_ms) > 500)) {
free_fall_start_ms = AP_HAL::millis();
free_fall_start_velz = inertial_nav.get_velocity().z;
}
// Once a possible throw condition has been detected, we check for 2.5 m/s of downwards velocity change in less than 0.5 seconds to confirm
bool throw_condition_confirmed = ((AP_HAL::millis() - free_fall_start_ms < 500) && ((inertial_nav.get_velocity().z - free_fall_start_velz) < -250.0f));
// start motors and enter the control mode if we are in continuous freefall
if (throw_condition_confirmed) {
return true;
} else {
return false;
}
}
bool ModeThrow::throw_attitude_good()
{
// Check that we have uprighted the copter
const Matrix3f &rotMat = ahrs.get_rotation_body_to_ned();
return (rotMat.c.z > 0.866f); // is_upright
}
bool ModeThrow::throw_height_good()
{
// Check that we are within 0.5m of the demanded height
return (pos_control->get_alt_error() < 50.0f);
}
bool ModeThrow::throw_position_good()
{
// check that our horizontal position error is within 50cm
return (pos_control->get_horizontal_error() < 50.0f);
}
#endif