Ardupilot2/libraries/AP_DDS/AP_DDS_Client.cpp
2023-04-28 07:36:00 +10:00

681 lines
22 KiB
C++

#include <AP_HAL/AP_HAL_Boards.h>
#if AP_DDS_ENABLED
#include <AP_GPS/AP_GPS.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_RTC/AP_RTC.h>
#include <AP_SerialManager/AP_SerialManager.h>
#include <AP_Math/AP_Math.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_BattMonitor/AP_BattMonitor.h>
#include <AP_AHRS/AP_AHRS.h>
#include "AP_DDS_Client.h"
static constexpr uint16_t DELAY_TIME_TOPIC_MS = 10;
static constexpr uint16_t DELAY_BATTERY_STATE_TOPIC_MS = 1000;
static constexpr uint16_t DELAY_LOCAL_POSE_TOPIC_MS = 33;
static constexpr uint16_t DELAY_LOCAL_VELOCITY_TOPIC_MS = 33;
static char WGS_84_FRAME_ID[] = "WGS-84";
// https://www.ros.org/reps/rep-0105.html#base-link
static char BASE_LINK_FRAME_ID[] = "base_link";
AP_HAL::UARTDriver *dds_port;
const AP_Param::GroupInfo AP_DDS_Client::var_info[]= {
//! @todo Params go here
AP_GROUPEND
};
#include "AP_DDS_Topic_Table.h"
void AP_DDS_Client::update_topic(builtin_interfaces_msg_Time& msg)
{
uint64_t utc_usec;
if (!AP::rtc().get_utc_usec(utc_usec)) {
utc_usec = AP_HAL::micros64();
}
msg.sec = utc_usec / 1000000ULL;
msg.nanosec = (utc_usec % 1000000ULL) * 1000UL;
}
bool AP_DDS_Client::update_topic(sensor_msgs_msg_NavSatFix& msg, const uint8_t instance)
{
// Add a lambda that takes in navsatfix msg and populates the cov
// Make it constexpr if possible
// https://www.fluentcpp.com/2021/12/13/the-evolutions-of-lambdas-in-c14-c17-and-c20/
// constexpr auto times2 = [] (sensor_msgs_msg_NavSatFix* msg) { return n * 2; };
// assert(instance >= GPS_MAX_RECEIVERS);
if (instance >= GPS_MAX_RECEIVERS) {
return false;
}
auto &gps = AP::gps();
WITH_SEMAPHORE(gps.get_semaphore());
if (!gps.is_healthy(instance)) {
msg.status.status = -1; // STATUS_NO_FIX
msg.status.service = 0; // No services supported
msg.position_covariance_type = 0; // COVARIANCE_TYPE_UNKNOWN
return false;
}
// No update is needed
const auto last_fix_time_ms = gps.last_fix_time_ms(instance);
if (last_nav_sat_fix_time_ms == last_fix_time_ms) {
return false;
} else {
last_nav_sat_fix_time_ms = last_fix_time_ms;
}
update_topic(msg.header.stamp);
strcpy(msg.header.frame_id, WGS_84_FRAME_ID);
msg.status.service = 0; // SERVICE_GPS
msg.status.status = -1; // STATUS_NO_FIX
//! @todo What about glonass, compass, galileo?
//! This will be properly designed and implemented to spec in #23277
msg.status.service = 1; // SERVICE_GPS
const auto status = gps.status(instance);
switch (status) {
case AP_GPS::NO_GPS:
case AP_GPS::NO_FIX:
msg.status.status = -1; // STATUS_NO_FIX
msg.position_covariance_type = 0; // COVARIANCE_TYPE_UNKNOWN
return true;
case AP_GPS::GPS_OK_FIX_2D:
case AP_GPS::GPS_OK_FIX_3D:
msg.status.status = 0; // STATUS_FIX
break;
case AP_GPS::GPS_OK_FIX_3D_DGPS:
msg.status.status = 1; // STATUS_SBAS_FIX
break;
case AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT:
case AP_GPS::GPS_OK_FIX_3D_RTK_FIXED:
msg.status.status = 2; // STATUS_SBAS_FIX
break;
default:
//! @todo Can we not just use an enum class and not worry about this condition?
break;
}
const auto loc = gps.location(instance);
msg.latitude = loc.lat * 1E-7;
msg.longitude = loc.lng * 1E-7;
int32_t alt_cm;
if (!loc.get_alt_cm(Location::AltFrame::ABSOLUTE, alt_cm)) {
// With absolute frame, this condition is unlikely
msg.status.status = -1; // STATUS_NO_FIX
msg.position_covariance_type = 0; // COVARIANCE_TYPE_UNKNOWN
return true;
}
msg.altitude = alt_cm / 100.0;
// ROS allows double precision, ArduPilot exposes float precision today
Matrix3f cov;
msg.position_covariance_type = (uint8_t)gps.position_covariance(instance, cov);
msg.position_covariance[0] = cov[0][0];
msg.position_covariance[1] = cov[0][1];
msg.position_covariance[2] = cov[0][2];
msg.position_covariance[3] = cov[1][0];
msg.position_covariance[4] = cov[1][1];
msg.position_covariance[5] = cov[1][2];
msg.position_covariance[6] = cov[2][0];
msg.position_covariance[7] = cov[2][1];
msg.position_covariance[8] = cov[2][2];
return true;
}
void AP_DDS_Client::populate_static_transforms(tf2_msgs_msg_TFMessage& msg)
{
msg.transforms_size = 0;
auto &gps = AP::gps();
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) {
const auto gps_type = gps.get_type(i);
if (gps_type == AP_GPS::GPS_Type::GPS_TYPE_NONE) {
continue;
}
update_topic(msg.transforms[i].header.stamp);
char gps_frame_id[16];
//! @todo should GPS frame ID's be 0 or 1 indexed in ROS?
hal.util->snprintf(gps_frame_id, sizeof(gps_frame_id), "GPS_%u", i);
strcpy(msg.transforms[i].header.frame_id, BASE_LINK_FRAME_ID);
strcpy(msg.transforms[i].child_frame_id, gps_frame_id);
// The body-frame offsets
// X - Forward
// Y - Right
// Z - Down
// https://ardupilot.org/copter/docs/common-sensor-offset-compensation.html#sensor-position-offset-compensation
const auto offset = gps.get_antenna_offset(i);
// In ROS REP 103, it follows this convention
// X - Forward
// Y - Left
// Z - Up
// https://www.ros.org/reps/rep-0103.html#axis-orientation
msg.transforms[i].transform.translation.x = offset[0];
msg.transforms[i].transform.translation.y = -1 * offset[1];
msg.transforms[i].transform.translation.z = -1 * offset[2];
msg.transforms_size++;
}
}
void AP_DDS_Client::update_topic(sensor_msgs_msg_BatteryState& msg, const uint8_t instance)
{
if (instance >= AP_BATT_MONITOR_MAX_INSTANCES) {
return;
}
update_topic(msg.header.stamp);
auto &battery = AP::battery();
if (!battery.healthy(instance))
{
msg.power_supply_status = 3; //POWER_SUPPLY_HEALTH_DEAD
msg.present = false;
return;
}
msg.present = true;
msg.voltage = battery.voltage(instance);
float temperature;
msg.temperature = (battery.get_temperature(temperature, instance)) ? temperature : NAN;
float current;
msg.current = (battery.current_amps(current, instance)) ? -1 * current : NAN;
const float design_capacity = (float)battery.pack_capacity_mah(instance)/1000.0;
msg.design_capacity = design_capacity;
uint8_t percentage;
if (battery.capacity_remaining_pct(percentage, instance))
{
msg.percentage = percentage/100.0;
msg.charge = (percentage * design_capacity)/100.0;
}
else
{
msg.percentage = NAN;
msg.charge = NAN;
}
msg.capacity = NAN;
if (battery.current_amps(current, instance))
{
if (percentage == 100) {
msg.power_supply_status = 4; //POWER_SUPPLY_STATUS_FULL
}
else if (current < 0.0) {
msg.power_supply_status = 1; //POWER_SUPPLY_STATUS_CHARGING
}
else if (current > 0.0) {
msg.power_supply_status = 2; //POWER_SUPPLY_STATUS_DISCHARGING
}
else {
msg.power_supply_status = 3; //POWER_SUPPLY_STATUS_NOT_CHARGING
}
}
else
{
msg.power_supply_status = 0; //POWER_SUPPLY_STATUS_UNKNOWN
}
msg.power_supply_health = (battery.overpower_detected(instance)) ? 4 : 1; //POWER_SUPPLY_HEALTH_OVERVOLTAGE or POWER_SUPPLY_HEALTH_GOOD
msg.power_supply_technology = 0; //POWER_SUPPLY_TECHNOLOGY_UNKNOWN
if (battery.has_cell_voltages(instance))
{
const uint16_t* cellVoltages = battery.get_cell_voltages(instance).cells;
std::copy(cellVoltages, cellVoltages + AP_BATT_MONITOR_CELLS_MAX, msg.cell_voltage);
}
}
void AP_DDS_Client::update_topic(geometry_msgs_msg_PoseStamped& msg)
{
update_topic(msg.header.stamp);
strcpy(msg.header.frame_id, BASE_LINK_FRAME_ID);
auto &ahrs = AP::ahrs();
WITH_SEMAPHORE(ahrs.get_semaphore());
// ROS REP 103 uses the ENU convention:
// X - East
// Y - North
// Z - Up
// https://www.ros.org/reps/rep-0103.html#axis-orientation
// AP_AHRS uses the NED convention
// X - North
// Y - East
// Z - Down
// As a consequence, to follow ROS REP 103, it is necessary to switch X and Y,
// as well as invert Z
Vector3f position;
if (ahrs.get_relative_position_NED_home(position))
{
msg.pose.position.x = position[1];
msg.pose.position.y = position[0];
msg.pose.position.z = -position[2];
}
// In ROS REP 103, axis orientation uses the following convention:
// X - Forward
// Y - Left
// Z - Up
// https://www.ros.org/reps/rep-0103.html#axis-orientation
// As a consequence, to follow ROS REP 103, it is necessary to switch X and Y,
// as well as invert Z (NED to ENU convertion) as well as a 90 degree rotation in the Z axis
// for x to point forward
Quaternion orientation;
if (ahrs.get_quaternion(orientation))
{
Quaternion aux(orientation[0], orientation[2], orientation[1], -orientation[3]); //NED to ENU transformation
Quaternion transformation (sqrt(2)/2,0,0,sqrt(2)/2); // Z axis 90 degree rotation
orientation = aux * transformation;
msg.pose.orientation.w = orientation[0];
msg.pose.orientation.x = orientation[1];
msg.pose.orientation.y = orientation[2];
msg.pose.orientation.z = orientation[3];
}
}
void AP_DDS_Client::update_topic(geometry_msgs_msg_TwistStamped& msg)
{
update_topic(msg.header.stamp);
strcpy(msg.header.frame_id, BASE_LINK_FRAME_ID);
auto &ahrs = AP::ahrs();
WITH_SEMAPHORE(ahrs.get_semaphore());
// ROS REP 103 uses the ENU convention:
// X - East
// Y - North
// Z - Up
// https://www.ros.org/reps/rep-0103.html#axis-orientation
// AP_AHRS uses the NED convention
// X - North
// Y - East
// Z - Down
// As a consequence, to follow ROS REP 103, it is necessary to switch X and Y,
// as well as invert Z
Vector3f velocity;
if (ahrs.get_velocity_NED(velocity))
{
msg.twist.linear.x = velocity[1];
msg.twist.linear.y = velocity[0];
msg.twist.linear.z = -velocity[2];
}
// In ROS REP 103, axis orientation uses the following convention:
// X - Forward
// Y - Left
// Z - Up
// https://www.ros.org/reps/rep-0103.html#axis-orientation
// The gyro data is received from AP_AHRS in body-frame
// X - Forward
// Y - Right
// Z - Down
// As a consequence, to follow ROS REP 103, it is necessary to invert Y and Z
Vector3f angular_velocity = ahrs.get_gyro();
msg.twist.angular.x = angular_velocity[0];
msg.twist.angular.y = -angular_velocity[1];
msg.twist.angular.z = -angular_velocity[2];
}
/*
class constructor
*/
AP_DDS_Client::AP_DDS_Client(void)
{
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_DDS_Client::main_loop, void),
"DDS",
8192, AP_HAL::Scheduler::PRIORITY_IO, 1)) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR,"DDS Client: thread create failed");
}
}
/*
main loop for DDS thread
*/
void AP_DDS_Client::main_loop(void)
{
if (!init() || !create()) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR,"DDS Client: Creation Requests failed");
return;
}
GCS_SEND_TEXT(MAV_SEVERITY_INFO,"DDS Client: Initialization passed");
populate_static_transforms(static_transforms_topic);
write_static_transforms();
while (true) {
hal.scheduler->delay(1);
update();
}
}
bool AP_DDS_Client::init()
{
AP_SerialManager *serial_manager = AP_SerialManager::get_singleton();
dds_port = serial_manager->find_serial(AP_SerialManager::SerialProtocol_DDS_XRCE, 0);
if (dds_port == nullptr) {
return false;
}
// ensure we own the UART
dds_port->begin(0);
constexpr uint8_t fd = 0;
constexpr uint8_t relativeSerialAgentAddr = 0;
constexpr uint8_t relativeSerialClientAddr = 1;
if (!uxr_init_serial_transport(&serial_transport,fd,relativeSerialAgentAddr,relativeSerialClientAddr)) {
return false;
}
constexpr uint32_t uniqueClientKey = 0xAAAABBBB;
//TODO does this need to be inside the loop to handle reconnect?
uxr_init_session(&session, &serial_transport.comm, uniqueClientKey);
while (!uxr_create_session(&session)) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO,"DDS Client: Initialization waiting...");
hal.scheduler->delay(1000);
}
reliable_in = uxr_create_input_reliable_stream(&session,input_reliable_stream,BUFFER_SIZE_SERIAL,STREAM_HISTORY);
reliable_out = uxr_create_output_reliable_stream(&session,output_reliable_stream,BUFFER_SIZE_SERIAL,STREAM_HISTORY);
GCS_SEND_TEXT(MAV_SEVERITY_INFO,"DDS Client: Init Complete");
return true;
}
bool AP_DDS_Client::create()
{
WITH_SEMAPHORE(csem);
// Participant
const uxrObjectId participant_id = {
.id = 0x01,
.type = UXR_PARTICIPANT_ID
};
const char* participant_ref = "participant_profile";
const auto participant_req_id = uxr_buffer_create_participant_ref(&session, reliable_out, participant_id,0,participant_ref,UXR_REPLACE);
//Participant requests
constexpr uint8_t nRequestsParticipant = 1;
const uint16_t requestsParticipant[nRequestsParticipant] = {participant_req_id};
constexpr int maxTimeMsPerRequestMs = 250;
constexpr int requestTimeoutParticipantMs = nRequestsParticipant * maxTimeMsPerRequestMs;
uint8_t statusParticipant[nRequestsParticipant];
if (!uxr_run_session_until_all_status(&session, requestTimeoutParticipantMs, requestsParticipant, statusParticipant, nRequestsParticipant)) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR,"XRCE Client: Participant session request failure");
// TODO add a failure log message sharing the status results
return false;
}
for (size_t i = 0 ; i < ARRAY_SIZE(topics); i++) {
// Topic
const uxrObjectId topic_id = {
.id = topics[i].topic_id,
.type = UXR_TOPIC_ID
};
const char* topic_ref = topics[i].topic_profile_label;
const auto topic_req_id = uxr_buffer_create_topic_ref(&session,reliable_out,topic_id,participant_id,topic_ref,UXR_REPLACE);
// Publisher
const uxrObjectId pub_id = {
.id = topics[i].pub_id,
.type = UXR_PUBLISHER_ID
};
const char* pub_xml = "";
const auto pub_req_id = uxr_buffer_create_publisher_xml(&session,reliable_out,pub_id,participant_id,pub_xml,UXR_REPLACE);
// Data Writer
const char* data_writer_ref = topics[i].dw_profile_label;
const auto dwriter_req_id = uxr_buffer_create_datawriter_ref(&session,reliable_out,topics[i].dw_id,pub_id,data_writer_ref,UXR_REPLACE);
// Status requests
constexpr uint8_t nRequests = 3;
const uint16_t requests[nRequests] = {topic_req_id, pub_req_id, dwriter_req_id};
constexpr int requestTimeoutMs = nRequests * maxTimeMsPerRequestMs;
uint8_t status[nRequests];
if (!uxr_run_session_until_all_status(&session, requestTimeoutMs, requests, status, nRequests)) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR,"XRCE Client: Topic/Pub/Writer session request failure for index 'TODO'");
for (int s = 0 ; s < nRequests; s++) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR,"XRCE Client: Status '%d' result '%u'", s, status[s]);
}
// TODO add a failure log message sharing the status results
return false;
} else {
GCS_SEND_TEXT(MAV_SEVERITY_INFO,"XRCE Client: Topic/Pub/Writer session pass for index 'TOOO'");
}
}
return true;
}
void AP_DDS_Client::write_time_topic()
{
WITH_SEMAPHORE(csem);
if (connected) {
ucdrBuffer ub;
const uint32_t topic_size = builtin_interfaces_msg_Time_size_of_topic(&time_topic, 0);
uxr_prepare_output_stream(&session,reliable_out,topics[0].dw_id,&ub,topic_size);
const bool success = builtin_interfaces_msg_Time_serialize_topic(&ub, &time_topic);
if (!success) {
// TODO sometimes serialization fails on bootup. Determine why.
// AP_HAL::panic("FATAL: XRCE_Client failed to serialize\n");
}
}
}
void AP_DDS_Client::write_nav_sat_fix_topic()
{
WITH_SEMAPHORE(csem);
if (connected) {
ucdrBuffer ub;
const uint32_t topic_size = sensor_msgs_msg_NavSatFix_size_of_topic(&nav_sat_fix_topic, 0);
uxr_prepare_output_stream(&session,reliable_out,topics[1].dw_id,&ub,topic_size);
const bool success = sensor_msgs_msg_NavSatFix_serialize_topic(&ub, &nav_sat_fix_topic);
if (!success) {
// TODO sometimes serialization fails on bootup. Determine why.
// AP_HAL::panic("FATAL: DDS_Client failed to serialize\n");
}
}
}
void AP_DDS_Client::write_static_transforms()
{
WITH_SEMAPHORE(csem);
if (connected) {
ucdrBuffer ub;
const uint32_t topic_size = tf2_msgs_msg_TFMessage_size_of_topic(&static_transforms_topic, 0);
uxr_prepare_output_stream(&session,reliable_out,topics[2].dw_id,&ub,topic_size);
const bool success = tf2_msgs_msg_TFMessage_serialize_topic(&ub, &static_transforms_topic);
if (!success) {
// TODO sometimes serialization fails on bootup. Determine why.
// AP_HAL::panic("FATAL: DDS_Client failed to serialize\n");
}
}
}
void AP_DDS_Client::write_battery_state_topic()
{
WITH_SEMAPHORE(csem);
if (connected) {
ucdrBuffer ub;
const uint32_t topic_size = sensor_msgs_msg_BatteryState_size_of_topic(&battery_state_topic, 0);
uxr_prepare_output_stream(&session,reliable_out,topics[3].dw_id,&ub,topic_size);
const bool success = sensor_msgs_msg_BatteryState_serialize_topic(&ub, &battery_state_topic);
if (!success) {
// TODO sometimes serialization fails on bootup. Determine why.
// AP_HAL::panic("FATAL: DDS_Client failed to serialize\n");
}
}
}
void AP_DDS_Client::write_local_pose_topic()
{
WITH_SEMAPHORE(csem);
if (connected) {
ucdrBuffer ub;
const uint32_t topic_size = geometry_msgs_msg_PoseStamped_size_of_topic(&local_pose_topic, 0);
uxr_prepare_output_stream(&session,reliable_out,topics[4].dw_id,&ub,topic_size);
const bool success = geometry_msgs_msg_PoseStamped_serialize_topic(&ub, &local_pose_topic);
if (!success) {
// TODO sometimes serialization fails on bootup. Determine why.
// AP_HAL::panic("FATAL: DDS_Client failed to serialize\n");
}
}
}
void AP_DDS_Client::write_local_velocity_topic()
{
WITH_SEMAPHORE(csem);
if (connected) {
ucdrBuffer ub;
const uint32_t topic_size = geometry_msgs_msg_TwistStamped_size_of_topic(&local_velocity_topic, 0);
uxr_prepare_output_stream(&session,reliable_out,topics[5].dw_id,&ub,topic_size);
const bool success = geometry_msgs_msg_TwistStamped_serialize_topic(&ub, &local_velocity_topic);
if (!success) {
// TODO sometimes serialization fails on bootup. Determine why.
// AP_HAL::panic("FATAL: DDS_Client failed to serialize\n");
}
}
}
void AP_DDS_Client::update()
{
WITH_SEMAPHORE(csem);
const auto cur_time_ms = AP_HAL::millis64();
if (cur_time_ms - last_time_time_ms > DELAY_TIME_TOPIC_MS) {
update_topic(time_topic);
last_time_time_ms = cur_time_ms;
write_time_topic();
}
constexpr uint8_t gps_instance = 0;
if (update_topic(nav_sat_fix_topic, gps_instance)) {
write_nav_sat_fix_topic();
}
if (cur_time_ms - last_battery_state_time_ms > DELAY_BATTERY_STATE_TOPIC_MS) {
constexpr uint8_t battery_instance = 0;
update_topic(battery_state_topic, battery_instance);
last_battery_state_time_ms = cur_time_ms;
write_battery_state_topic();
}
if (cur_time_ms - last_local_pose_time_ms > DELAY_LOCAL_POSE_TOPIC_MS) {
update_topic(local_pose_topic);
last_local_pose_time_ms = cur_time_ms;
write_local_pose_topic();
}
if (cur_time_ms - last_local_velocity_time_ms > DELAY_LOCAL_VELOCITY_TOPIC_MS) {
update_topic(local_velocity_topic);
last_local_velocity_time_ms = cur_time_ms;
write_local_velocity_topic();
}
connected = uxr_run_session_time(&session, 1);
}
/*
implement C functions for serial transport
*/
extern "C" {
#include <uxr/client/profile/transport/serial/serial_transport_platform.h>
}
bool uxr_init_serial_platform(void* args, int fd, uint8_t remote_addr, uint8_t local_addr)
{
//! @todo Add error reporting
return true;
}
bool uxr_close_serial_platform(void* args)
{
//! @todo Add error reporting
return true;
}
size_t uxr_write_serial_data_platform(void* args, const uint8_t* buf, size_t len, uint8_t* errcode)
{
if (dds_port == nullptr) {
*errcode = 1;
return 0;
}
ssize_t bytes_written = dds_port->write(buf, len);
if (bytes_written <= 0) {
*errcode = 1;
return 0;
}
//! @todo Add populate the error code correctly
*errcode = 0;
return bytes_written;
}
size_t uxr_read_serial_data_platform(void* args, uint8_t* buf, size_t len, int timeout, uint8_t* errcode)
{
if (dds_port == nullptr) {
*errcode = 1;
return 0;
}
while (timeout > 0 && dds_port->available() < len) {
hal.scheduler->delay(1); // TODO select or poll this is limiting speed (1mS)
timeout--;
}
ssize_t bytes_read = dds_port->read(buf, len);
if (bytes_read <= 0) {
*errcode = 1;
return 0;
}
//! @todo Add error reporting
*errcode = 0;
return bytes_read;
}
#if CONFIG_HAL_BOARD != HAL_BOARD_SITL
extern "C" {
int clock_gettime(clockid_t clockid, struct timespec *ts);
}
int clock_gettime(clockid_t clockid, struct timespec *ts)
{
//! @todo the value of clockid is ignored here.
//! A fallback mechanism is employed against the caller's choice of clock.
uint64_t utc_usec;
if (!AP::rtc().get_utc_usec(utc_usec)) {
utc_usec = AP_HAL::micros64();
}
ts->tv_sec = utc_usec / 1000000ULL;
ts->tv_nsec = (utc_usec % 1000000ULL) * 1000UL;
return 0;
}
#endif // CONFIG_HAL_BOARD
#endif // AP_DDS_ENABLED