Ardupilot2/libraries/SITL/SIM_Balloon.cpp
Andrew Tridgell 83cc60a699 SITL: added simple balloon simulator
for testing balloon release code in plane
2015-06-15 09:20:55 +10:00

123 lines
3.5 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
balloon simulator class
*/
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include "SIM_Balloon.h"
#include <stdio.h>
/*
constructor
*/
Balloon::Balloon(const char *home_str, const char *frame_str) :
Aircraft(home_str, frame_str)
{
mass = 5.0f;
}
/*
update the balloon simulation by one time step
*/
void Balloon::update(const struct sitl_input &input)
{
if (!released && input.servos[6] > 1800) {
::printf("Balloon released\n");
released = true;
}
if (!burst && input.servos[7] > 1800) {
::printf("Balloon burst\n");
burst = true;
}
float delta_time = frame_time_us * 1.0e-6f;
// rotational air resistance
Vector3f rot_accel = -gyro * radians(400) / terminal_rotation_rate;
// update rotational rates in body frame
gyro += rot_accel * delta_time;
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
// air resistance
Vector3f air_resistance = -velocity_ef * (GRAVITY_MSS/terminal_velocity);
float lift_accel = 0;
if (!burst && released) {
float air_resistance_at_climb_rate = climb_rate * (GRAVITY_MSS/terminal_velocity);
lift_accel = air_resistance_at_climb_rate + GRAVITY_MSS * dcm.c.z;
}
accel_body = Vector3f(0, 0, -lift_accel);
Vector3f accel_earth = dcm * accel_body;
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
accel_earth += air_resistance;
// if we're on the ground, then our vertical acceleration is limited
// to zero. This effectively adds the force of the ground on the aircraft
if (on_ground(position) && accel_earth.z > 0) {
accel_earth.z = 0;
}
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS));
// add some noise
add_noise(velocity_ef.length() / terminal_velocity);
// new velocity vector
velocity_ef += accel_earth * delta_time;
// new position vector
Vector3f old_position = position;
position += velocity_ef * delta_time;
if (position.z < -burst_altitude) {
::printf("Balloon burst at %.1f\n", -position.z);
burst = true;
}
// assume zero wind for now
airspeed = velocity_ef.length();
// constrain height to the ground
if (on_ground(position)) {
if (!on_ground(old_position)) {
printf("Hit ground at %f m/s\n", velocity_ef.z);
velocity_ef.zero();
// zero roll/pitch, but keep yaw
float r, p, y;
dcm.to_euler(&r, &p, &y);
dcm.from_euler(0, 0, y);
position.z = -(ground_level + frame_height - home.alt*0.01f);
}
}
// update lat/lon/altitude
update_position();
}
#endif // CONFIG_HAL_BOARD