Ardupilot2/libraries/AP_Airspeed/AP_Airspeed.h

339 lines
9.7 KiB
C++

#pragma once
#include "AP_Airspeed_config.h"
#if AP_AIRSPEED_ENABLED
#include <AP_Param/AP_Param.h>
#include <AP_Math/AP_Math.h>
#if AP_AIRSPEED_MSP_ENABLED
#include <AP_MSP/msp.h>
#endif
class AP_Airspeed_Backend;
class AP_Airspeed_Params {
public:
// Constructor
AP_Airspeed_Params(void);
// parameters for each instance
AP_Int32 bus_id;
#ifndef HAL_BUILD_AP_PERIPH
AP_Float offset;
AP_Float ratio;
#endif
AP_Float psi_range;
#ifndef HAL_BUILD_AP_PERIPH
AP_Int8 use;
AP_Int8 pin;
AP_Int8 skip_cal;
AP_Int8 tube_order;
#endif
AP_Int8 type;
AP_Int8 bus;
#if AP_AIRSPEED_AUTOCAL_ENABLE
AP_Int8 autocal;
#endif
static const struct AP_Param::GroupInfo var_info[];
};
class Airspeed_Calibration {
public:
friend class AP_Airspeed;
// constructor
Airspeed_Calibration();
// initialise the calibration
void init(float initial_ratio);
// take current airspeed in m/s and ground speed vector and return
// new scaling factor
float update(float airspeed, const Vector3f &vg, int16_t max_airspeed_allowed_during_cal);
private:
// state of kalman filter for airspeed ratio estimation
Matrix3f P; // covarience matrix
const float Q0; // process noise matrix top left and middle element
const float Q1; // process noise matrix bottom right element
Vector3f state; // state vector
const float DT; // time delta
};
class AP_Airspeed
{
public:
friend class AP_Airspeed_Backend;
// constructor
AP_Airspeed();
void set_fixedwing_parameters(const class AP_FixedWing *_fixed_wing_parameters);
void init(void);
void allocate();
// indicate which bit in LOG_BITMASK indicates we should log airspeed readings
void set_log_bit(uint32_t log_bit) { _log_bit = log_bit; }
#if AP_AIRSPEED_AUTOCAL_ENABLE
// inflight ratio calibration
void set_calibration_enabled(bool enable) {calibration_enabled = enable;}
#endif //AP_AIRSPEED_AUTOCAL_ENABLE
// read the analog source and update airspeed
void update(void);
// calibrate the airspeed. This must be called on startup if the
// altitude/climb_rate/acceleration interfaces are ever used
void calibrate(bool in_startup);
// return the current airspeed in m/s
float get_airspeed(uint8_t i) const;
float get_airspeed(void) const { return get_airspeed(primary); }
// return the unfiltered airspeed in m/s
float get_raw_airspeed(uint8_t i) const;
float get_raw_airspeed(void) const { return get_raw_airspeed(primary); }
// return the current airspeed ratio (dimensionless)
float get_airspeed_ratio(uint8_t i) const {
#ifndef HAL_BUILD_AP_PERIPH
return param[i].ratio;
#else
return 0.0;
#endif
}
float get_airspeed_ratio(void) const { return get_airspeed_ratio(primary); }
// get temperature if available
bool get_temperature(uint8_t i, float &temperature);
bool get_temperature(float &temperature) { return get_temperature(primary, temperature); }
// set the airspeed ratio (dimensionless)
#ifndef HAL_BUILD_AP_PERIPH
void set_airspeed_ratio(uint8_t i, float ratio) {
param[i].ratio.set(ratio);
}
void set_airspeed_ratio(float ratio) { set_airspeed_ratio(primary, ratio); }
#endif
// return true if airspeed is enabled, and airspeed use is set
bool use(uint8_t i) const;
bool use(void) const { return use(primary); }
// force disabling of all airspeed sensors
void force_disable_use(bool value) {
_force_disable_use = value;
}
// return true if airspeed is enabled
bool enabled(uint8_t i) const;
bool enabled(void) const { return enabled(primary); }
// return the differential pressure in Pascal for the last airspeed reading
float get_differential_pressure(uint8_t i) const;
float get_differential_pressure(void) const { return get_differential_pressure(primary); }
// update airspeed ratio calibration
void update_calibration(const Vector3f &vground, int16_t max_airspeed_allowed_during_cal);
// return health status of sensor
bool healthy(uint8_t i) const;
bool healthy(void) const { return healthy(primary); }
// return true if all enabled sensors are healthy
bool all_healthy(void) const;
// return time in ms of last update
uint32_t last_update_ms(uint8_t i) const { return state[i].last_update_ms; }
uint32_t last_update_ms(void) const { return last_update_ms(primary); }
#if AP_AIRSPEED_HYGROMETER_ENABLE
bool get_hygrometer(uint8_t i, uint32_t &last_sample_ms, float &temperature, float &humidity) const;
#endif
static const struct AP_Param::GroupInfo var_info[];
enum pitot_tube_order { PITOT_TUBE_ORDER_POSITIVE = 0,
PITOT_TUBE_ORDER_NEGATIVE = 1,
PITOT_TUBE_ORDER_AUTO = 2 };
enum OptionsMask {
ON_FAILURE_AHRS_WIND_MAX_DO_DISABLE = (1<<0), // If set then use airspeed failure check
ON_FAILURE_AHRS_WIND_MAX_RECOVERY_DO_REENABLE = (1<<1), // If set then automatically enable the airspeed sensor use when healthy again.
DISABLE_VOLTAGE_CORRECTION = (1<<2),
USE_EKF_CONSISTENCY = (1<<3),
};
enum airspeed_type {
TYPE_NONE=0,
TYPE_I2C_MS4525=1,
TYPE_ANALOG=2,
TYPE_I2C_MS5525=3,
TYPE_I2C_MS5525_ADDRESS_1=4,
TYPE_I2C_MS5525_ADDRESS_2=5,
TYPE_I2C_SDP3X=6,
TYPE_I2C_DLVR_5IN=7,
TYPE_UAVCAN=8,
TYPE_I2C_DLVR_10IN=9,
TYPE_I2C_DLVR_20IN=10,
TYPE_I2C_DLVR_30IN=11,
TYPE_I2C_DLVR_60IN=12,
TYPE_NMEA_WATER=13,
TYPE_MSP=14,
TYPE_I2C_ASP5033=15,
TYPE_SITL=100,
};
// get current primary sensor
uint8_t get_primary(void) const { return primary; }
// get number of sensors
uint8_t get_num_sensors(void) const { return num_sensors; }
static AP_Airspeed *get_singleton() { return _singleton; }
// return the current corrected pressure, public for AP_Periph
float get_corrected_pressure(uint8_t i) const;
float get_corrected_pressure(void) const {
return get_corrected_pressure(primary);
}
#if AP_AIRSPEED_MSP_ENABLED
void handle_msp(const MSP::msp_airspeed_data_message_t &pkt);
#endif
enum class CalibrationState {
NOT_STARTED,
IN_PROGRESS,
SUCCESS,
FAILED
};
// get aggregate calibration state for the Airspeed library:
CalibrationState get_calibration_state() const;
private:
static AP_Airspeed *_singleton;
AP_Int8 _enable;
bool lib_enabled() const;
AP_Int8 primary_sensor;
AP_Int8 max_speed_pcnt;
AP_Int32 _options; // bitmask options for airspeed
AP_Float _wind_max;
AP_Float _wind_warn;
AP_Float _wind_gate;
AP_Airspeed_Params param[AIRSPEED_MAX_SENSORS];
CalibrationState calibration_state[AIRSPEED_MAX_SENSORS];
struct airspeed_state {
float raw_airspeed;
float airspeed;
float last_pressure;
float filtered_pressure;
float corrected_pressure;
uint32_t last_update_ms;
bool use_zero_offset;
bool healthy;
// state of runtime calibration
struct {
uint32_t start_ms;
float sum;
uint16_t count;
uint16_t read_count;
} cal;
#if AP_AIRSPEED_AUTOCAL_ENABLE
Airspeed_Calibration calibration;
float last_saved_ratio;
uint8_t counter;
#endif // AP_AIRSPEED_AUTOCAL_ENABLE
struct {
uint32_t last_check_ms;
float health_probability;
float test_ratio;
int8_t param_use_backup;
uint32_t last_warn_ms;
} failures;
#if AP_AIRSPEED_HYGROMETER_ENABLE
uint32_t last_hygrometer_log_ms;
#endif
} state[AIRSPEED_MAX_SENSORS];
bool calibration_enabled;
// can be set to true to disable the use of the airspeed sensor
bool _force_disable_use;
// current primary sensor
uint8_t primary;
uint8_t num_sensors;
uint32_t _log_bit = -1; // stores which bit in LOG_BITMASK is used to indicate we should log airspeed readings
void read(uint8_t i);
// return the differential pressure in Pascal for the last airspeed reading for the requested instance
// returns 0 if the sensor is not enabled
float get_pressure(uint8_t i);
// get the health probability
float get_health_probability(uint8_t i) const {
return state[i].failures.health_probability;
}
float get_health_probability(void) const {
return get_health_probability(primary);
}
// get the consistency test ratio
float get_test_ratio(uint8_t i) const {
return state[i].failures.test_ratio;
}
float get_test_ratio(void) const {
return get_test_ratio(primary);
}
void update_calibration(uint8_t i, float raw_pressure);
void update_calibration(uint8_t i, const Vector3f &vground, int16_t max_airspeed_allowed_during_cal);
void send_airspeed_calibration(const Vector3f &vg);
// return the current calibration offset
float get_offset(uint8_t i) const {
#ifndef HAL_BUILD_AP_PERIPH
return param[i].offset;
#else
return 0.0;
#endif
}
float get_offset(void) const { return get_offset(primary); }
void check_sensor_failures();
void check_sensor_ahrs_wind_max_failures(uint8_t i);
AP_Airspeed_Backend *sensor[AIRSPEED_MAX_SENSORS];
void Log_Airspeed();
bool add_backend(AP_Airspeed_Backend *backend);
const AP_FixedWing *fixed_wing_parameters;
void convert_per_instance();
};
namespace AP {
AP_Airspeed *airspeed();
};
#endif // AP_AIRSPEED_ENABLED